Differential Tunneling Conductance in Multicomponent Bi2 – xSbxTe3 – y – zSeySz Solid Solutions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-05

AUTHORS

L. N. Lukyanova, I. V. Makarenko, O. A. Usov

ABSTRACT

—Differential tunneling conductance of the interlayer van der Waals surface (0001) is investigated in n-Bi2 – xSbxTe3 – y – zSeySz multicomponent solid solutions at x = 0.2, y = z = 0.09, optimized for near room temperatures with a high power factor and, at x = 0.4, y = 0, z = 0.06, with optimal thermoelectric properties for low temperatures and a high Seebeck coefficient. It is shown that the intensity of the fluctuations ΔED of the Dirac point energy, the shift of the valence band top, and the presence of surface levels in the energy gap formed by impurity defects are determined by the composition and thermoelectric properties of solid solutions. The contribution of the surface states of Dirac fermions increases in n-Bi1.8Sb0.2Te2.82Se0.09S0.09 solid solution with a high power factor due to a significant decrease in the surface concentration near the charge-neutrality point and an increase in fermion mobility. More... »

PAGES

317-320

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782622050049

DOI

http://dx.doi.org/10.1134/s1063782622050049

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1149447396


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lukyanova", 
        "givenName": "L. N.", 
        "id": "sg:person.013512047531.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013512047531.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Makarenko", 
        "givenName": "I. V.", 
        "id": "sg:person.010312170702.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010312170702.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Usov", 
        "givenName": "O. A.", 
        "id": "sg:person.013245001417.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013245001417.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1063782619050142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1115226420", 
          "https://doi.org/10.1134/s1063782619050142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-20559-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100726936", 
          "https://doi.org/10.1038/s41598-018-20559-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-019-13711-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1123428712", 
          "https://doi.org/10.1038/s41467-019-13711-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms10957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039944958", 
          "https://doi.org/10.1038/ncomms10957"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-05", 
    "datePublishedReg": "2022-05-01", 
    "description": "Abstract\u2014Differential tunneling conductance of the interlayer van der Waals surface (0001) is investigated in n-Bi2\u00a0\u2013\u00a0xSbxTe3\u00a0\u2013\u00a0y\u00a0\u2013\u00a0zSeySz multicomponent solid solutions at x = 0.2, y = z = 0.09, optimized for near room temperatures with a high power factor and, at x = 0.4, y = 0, z = 0.06, with optimal thermoelectric properties for low temperatures and a high Seebeck coefficient. It is shown that the intensity of the fluctuations \u0394ED of the Dirac point energy, the shift of the valence band top, and the presence of surface levels in the energy gap formed by impurity defects are determined by the composition and thermoelectric properties of solid solutions. The contribution of the surface states of Dirac fermions increases in n-Bi1.8Sb0.2Te2.82Se0.09S0.09 solid solution with a high power factor due to a significant decrease in the surface concentration near the charge-neutrality point and an increase in fermion mobility.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063782622050049", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "56"
      }
    ], 
    "keywords": [
      "high power factor", 
      "power factor", 
      "solid solution", 
      "thermoelectric properties", 
      "optimal thermoelectric properties", 
      "high Seebeck coefficient", 
      "near room temperature", 
      "multicomponent solid solutions", 
      "Seebeck coefficient", 
      "Bi2-xSbxTe3", 
      "room temperature", 
      "impurity defects", 
      "surface concentration", 
      "low temperature", 
      "valence band top", 
      "surface states", 
      "charge neutrality point", 
      "temperature", 
      "band top", 
      "solution", 
      "properties", 
      "energy gap", 
      "surface level", 
      "surface", 
      "Dirac point energy", 
      "tunneling conductance", 
      "van der Waals surface", 
      "energy", 
      "xSbxTe3", 
      "coefficient", 
      "differential tunneling conductance", 
      "top", 
      "increase", 
      "mobility", 
      "defects", 
      "conductance", 
      "composition", 
      "point energy", 
      "gap", 
      "point", 
      "intensity", 
      "concentration", 
      "\u0394Ed", 
      "decrease", 
      "contribution", 
      "factors", 
      "state", 
      "shift", 
      "presence", 
      "levels", 
      "significant decrease", 
      "fermions increases"
    ], 
    "name": "Differential Tunneling Conductance in Multicomponent Bi2 \u2013 xSbxTe3 \u2013 y \u2013 zSeySz Solid Solutions", 
    "pagination": "317-320", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1149447396"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782622050049"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782622050049", 
      "https://app.dimensions.ai/details/publication/pub.1149447396"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_924.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063782622050049"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782622050049'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782622050049'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782622050049'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782622050049'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      21 PREDICATES      82 URIs      69 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782622050049 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 anzsrc-for:0206
4 schema:author Nc2e6ed91b77e4e63841fbb47c8b87074
5 schema:citation sg:pub.10.1038/ncomms10957
6 sg:pub.10.1038/s41467-019-13711-3
7 sg:pub.10.1038/s41598-018-20559-y
8 sg:pub.10.1134/s1063782619050142
9 schema:datePublished 2022-05
10 schema:datePublishedReg 2022-05-01
11 schema:description Abstract—Differential tunneling conductance of the interlayer van der Waals surface (0001) is investigated in n-Bi2 – xSbxTe3 – y – zSeySz multicomponent solid solutions at x = 0.2, y = z = 0.09, optimized for near room temperatures with a high power factor and, at x = 0.4, y = 0, z = 0.06, with optimal thermoelectric properties for low temperatures and a high Seebeck coefficient. It is shown that the intensity of the fluctuations ΔED of the Dirac point energy, the shift of the valence band top, and the presence of surface levels in the energy gap formed by impurity defects are determined by the composition and thermoelectric properties of solid solutions. The contribution of the surface states of Dirac fermions increases in n-Bi1.8Sb0.2Te2.82Se0.09S0.09 solid solution with a high power factor due to a significant decrease in the surface concentration near the charge-neutrality point and an increase in fermion mobility.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N63742e140ad149d0a0b4f7dce3d4889f
15 Nd2d70426539e46b3806e36341191df99
16 sg:journal.1136692
17 schema:keywords Bi2-xSbxTe3
18 Dirac point energy
19 Seebeck coefficient
20 band top
21 charge neutrality point
22 coefficient
23 composition
24 concentration
25 conductance
26 contribution
27 decrease
28 defects
29 differential tunneling conductance
30 energy
31 energy gap
32 factors
33 fermions increases
34 gap
35 high Seebeck coefficient
36 high power factor
37 impurity defects
38 increase
39 intensity
40 levels
41 low temperature
42 mobility
43 multicomponent solid solutions
44 near room temperature
45 optimal thermoelectric properties
46 point
47 point energy
48 power factor
49 presence
50 properties
51 room temperature
52 shift
53 significant decrease
54 solid solution
55 solution
56 state
57 surface
58 surface concentration
59 surface level
60 surface states
61 temperature
62 thermoelectric properties
63 top
64 tunneling conductance
65 valence band top
66 van der Waals surface
67 xSbxTe3
68 ΔEd
69 schema:name Differential Tunneling Conductance in Multicomponent Bi2 – xSbxTe3 – y – zSeySz Solid Solutions
70 schema:pagination 317-320
71 schema:productId Nb4d79317588244f189362b61155a4d78
72 Ncb38e302d50f405e947970450a566ae8
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149447396
74 https://doi.org/10.1134/s1063782622050049
75 schema:sdDatePublished 2022-09-02T16:06
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N7430013891be4a8986c6e32d0034d125
78 schema:url https://doi.org/10.1134/s1063782622050049
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N5cf3ff01dcc1433c85873ac234a0da3f rdf:first sg:person.010312170702.01
83 rdf:rest N9cdad5b024ae4af29e1bf5e19e556a00
84 N63742e140ad149d0a0b4f7dce3d4889f schema:issueNumber 5
85 rdf:type schema:PublicationIssue
86 N7430013891be4a8986c6e32d0034d125 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 N9cdad5b024ae4af29e1bf5e19e556a00 rdf:first sg:person.013245001417.06
89 rdf:rest rdf:nil
90 Nb4d79317588244f189362b61155a4d78 schema:name dimensions_id
91 schema:value pub.1149447396
92 rdf:type schema:PropertyValue
93 Nc2e6ed91b77e4e63841fbb47c8b87074 rdf:first sg:person.013512047531.33
94 rdf:rest N5cf3ff01dcc1433c85873ac234a0da3f
95 Ncb38e302d50f405e947970450a566ae8 schema:name doi
96 schema:value 10.1134/s1063782622050049
97 rdf:type schema:PropertyValue
98 Nd2d70426539e46b3806e36341191df99 schema:volumeNumber 56
99 rdf:type schema:PublicationVolume
100 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
101 schema:name Physical Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
104 schema:name Condensed Matter Physics
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
107 schema:name Quantum Physics
108 rdf:type schema:DefinedTerm
109 sg:journal.1136692 schema:issn 1063-7826
110 1090-6479
111 schema:name Semiconductors
112 schema:publisher Pleiades Publishing
113 rdf:type schema:Periodical
114 sg:person.010312170702.01 schema:affiliation grid-institutes:grid.423485.c
115 schema:familyName Makarenko
116 schema:givenName I. V.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010312170702.01
118 rdf:type schema:Person
119 sg:person.013245001417.06 schema:affiliation grid-institutes:grid.423485.c
120 schema:familyName Usov
121 schema:givenName O. A.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013245001417.06
123 rdf:type schema:Person
124 sg:person.013512047531.33 schema:affiliation grid-institutes:grid.423485.c
125 schema:familyName Lukyanova
126 schema:givenName L. N.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013512047531.33
128 rdf:type schema:Person
129 sg:pub.10.1038/ncomms10957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039944958
130 https://doi.org/10.1038/ncomms10957
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/s41467-019-13711-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123428712
133 https://doi.org/10.1038/s41467-019-13711-3
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/s41598-018-20559-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1100726936
136 https://doi.org/10.1038/s41598-018-20559-y
137 rdf:type schema:CreativeWork
138 sg:pub.10.1134/s1063782619050142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1115226420
139 https://doi.org/10.1134/s1063782619050142
140 rdf:type schema:CreativeWork
141 grid-institutes:grid.423485.c schema:alternateName Ioffe Institute, 194021, St. Petersburg, Russia
142 schema:name Ioffe Institute, 194021, St. Petersburg, Russia
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...