Diffusion of Germanium from a Buried SiO2 Layer and Formation of a SiGe Phase View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-03

AUTHORS

I. E. Tyschenko, R. A. Khmelnitsky, V. V. Saraykin, V. A. Volodin, V. P. Popov

ABSTRACT

—Ge diffusivity from a buried SiO2 layer of a silicon-on-insulator (SOI) structure has been studied as a function of annealing temperature. It has been shown that, at an annealing temperature lower than 900°C, almost all Ge is localized in the implantation region of the SiO2 layer. As the annealing temperature is raised to 1100°C, migration of ion-implanted Ge is accompanied by several processes: diffusion into SiO2, accumulation at Si/SiO2 interfaces, diffusion into silicon, and evaporation from silicon. At 1100°C, Ge diffuses from SiO2 to the bonding interface of the SOI structure with the diffusion coefficient of ~2 × 10−15 cm2/s, which is 2 orders of magnitude higher than its equilibrium value. Depending on the thickness of the silicon layer, formation of a Ge or SiGe phase is detected after annealing at a temperature of 1100°C. More... »

PAGES

215-222

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782622020154

DOI

http://dx.doi.org/10.1134/s1063782622020154

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1147967979


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tyschenko", 
        "givenName": "I.\u00a0E.", 
        "id": "sg:person.013617030725.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013617030725.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 141190, Fryazino, Moscow region, Russia", 
          "id": "http://www.grid.ac/institutes/grid.462424.2", 
          "name": [
            "Lebedev Physical Institute, Russian Academy of Sciences, 119991, Moscow, Russia", 
            "Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 141190, Fryazino, Moscow region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khmelnitsky", 
        "givenName": "R.\u00a0A.", 
        "id": "sg:person.015453656671.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015453656671.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mokerov Institute of Ultra High Frequency Semiconductor Electronics, Russian Academy of Sciences, 117105, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Lukin State Research Institute of Physical Problems, 103460, MoscowZelenograd, Russia", 
            "Mokerov Institute of Ultra High Frequency Semiconductor Electronics, Russian Academy of Sciences, 117105, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saraykin", 
        "givenName": "V.\u00a0V.", 
        "id": "sg:person.016251237271.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016251237271.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
            "Novosibirsk State University, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Volodin", 
        "givenName": "V.\u00a0A.", 
        "id": "sg:person.011447316711.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011447316711.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popov", 
        "givenName": "V.\u00a0P.", 
        "id": "sg:person.016040143647.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016040143647.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1557/proc-486-175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067939843", 
          "https://doi.org/10.1557/proc-486-175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s106378260611011x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051302416", 
          "https://doi.org/10.1134/s106378260611011x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782609010114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024458564", 
          "https://doi.org/10.1134/s1063782609010114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-7-561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019393546", 
          "https://doi.org/10.1186/1556-276x-7-561"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-03", 
    "datePublishedReg": "2022-03-01", 
    "description": "Abstract\u2014Ge diffusivity from a buried SiO2 layer of a silicon-on-insulator (SOI) structure has been studied as a function of annealing temperature. It has been shown that, at an annealing temperature lower than 900\u00b0C, almost all Ge is localized in the implantation region of the SiO2 layer. As the annealing temperature is raised to 1100\u00b0C, migration of ion-implanted Ge is accompanied by several processes: diffusion into SiO2, accumulation at Si/SiO2 interfaces, diffusion into silicon, and evaporation from silicon. At 1100\u00b0C, Ge diffuses from SiO2 to the bonding interface of the SOI structure with the diffusion coefficient of ~2\u00a0\u00d7\u00a010\u221215\u00a0cm2/s, which is 2 orders of magnitude higher than its equilibrium value. Depending on the thickness of the silicon layer, formation of a Ge or SiGe phase is detected after annealing at a temperature of 1100\u00b0C.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063782622020154", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "56"
      }
    ], 
    "keywords": [
      "SiO2 layer", 
      "ion-implanted Ge", 
      "SiGe phase", 
      "diffusion of germanium", 
      "Si/SiO2 interface", 
      "insulator structures", 
      "implantation region", 
      "silicon layer", 
      "SOI structure", 
      "orders of magnitude", 
      "cm2/s", 
      "SiO2 interface", 
      "Ge", 
      "bonding interface", 
      "annealing temperature", 
      "silicon", 
      "diffusion coefficient", 
      "layer", 
      "equilibrium value", 
      "temperature", 
      "SiO2", 
      "germanium", 
      "diffusion", 
      "interface", 
      "structure", 
      "diffusivity", 
      "phase", 
      "evaporation", 
      "thickness", 
      "formation", 
      "magnitude", 
      "coefficient", 
      "process", 
      "region", 
      "order", 
      "values", 
      "function", 
      "migration", 
      "accumulation"
    ], 
    "name": "Diffusion of Germanium from a Buried SiO2 Layer and Formation of a SiGe Phase", 
    "pagination": "215-222", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1147967979"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782622020154"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782622020154", 
      "https://app.dimensions.ai/details/publication/pub.1147967979"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_927.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063782622020154"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782622020154'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782622020154'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782622020154'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782622020154'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      21 PREDICATES      69 URIs      56 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782622020154 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 anzsrc-for:0206
4 schema:author N9815687dc04f40c2b21bb13f56b89200
5 schema:citation sg:pub.10.1134/s106378260611011x
6 sg:pub.10.1134/s1063782609010114
7 sg:pub.10.1186/1556-276x-7-561
8 sg:pub.10.1557/proc-486-175
9 schema:datePublished 2022-03
10 schema:datePublishedReg 2022-03-01
11 schema:description Abstract—Ge diffusivity from a buried SiO2 layer of a silicon-on-insulator (SOI) structure has been studied as a function of annealing temperature. It has been shown that, at an annealing temperature lower than 900°C, almost all Ge is localized in the implantation region of the SiO2 layer. As the annealing temperature is raised to 1100°C, migration of ion-implanted Ge is accompanied by several processes: diffusion into SiO2, accumulation at Si/SiO2 interfaces, diffusion into silicon, and evaporation from silicon. At 1100°C, Ge diffuses from SiO2 to the bonding interface of the SOI structure with the diffusion coefficient of ~2 × 10−15 cm2/s, which is 2 orders of magnitude higher than its equilibrium value. Depending on the thickness of the silicon layer, formation of a Ge or SiGe phase is detected after annealing at a temperature of 1100°C.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N5981870450a440d7a4a7f6a4db9cb129
15 Nd2ec120593a144ecb7d4054189d9460b
16 sg:journal.1136692
17 schema:keywords Ge
18 SOI structure
19 Si/SiO2 interface
20 SiGe phase
21 SiO2
22 SiO2 interface
23 SiO2 layer
24 accumulation
25 annealing temperature
26 bonding interface
27 cm2/s
28 coefficient
29 diffusion
30 diffusion coefficient
31 diffusion of germanium
32 diffusivity
33 equilibrium value
34 evaporation
35 formation
36 function
37 germanium
38 implantation region
39 insulator structures
40 interface
41 ion-implanted Ge
42 layer
43 magnitude
44 migration
45 order
46 orders of magnitude
47 phase
48 process
49 region
50 silicon
51 silicon layer
52 structure
53 temperature
54 thickness
55 values
56 schema:name Diffusion of Germanium from a Buried SiO2 Layer and Formation of a SiGe Phase
57 schema:pagination 215-222
58 schema:productId N3c1c366515fe41ccaaec94ed4feefad1
59 Nb2058ad7d8594fb392b947a52989d79d
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147967979
61 https://doi.org/10.1134/s1063782622020154
62 schema:sdDatePublished 2022-09-02T16:07
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N67d5f17a16a4435b90b4603258c83059
65 schema:url https://doi.org/10.1134/s1063782622020154
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N09f046dae0884902908f289500e19e1f rdf:first sg:person.015453656671.90
70 rdf:rest Nca027694bb7c4d56b10f0451d1d63625
71 N3c1c366515fe41ccaaec94ed4feefad1 schema:name dimensions_id
72 schema:value pub.1147967979
73 rdf:type schema:PropertyValue
74 N5981870450a440d7a4a7f6a4db9cb129 schema:volumeNumber 56
75 rdf:type schema:PublicationVolume
76 N67d5f17a16a4435b90b4603258c83059 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N84689a03d0fc4177bbf3d31fd4c7bdc4 rdf:first sg:person.016040143647.02
79 rdf:rest rdf:nil
80 N9815687dc04f40c2b21bb13f56b89200 rdf:first sg:person.013617030725.51
81 rdf:rest N09f046dae0884902908f289500e19e1f
82 Nb2058ad7d8594fb392b947a52989d79d schema:name doi
83 schema:value 10.1134/s1063782622020154
84 rdf:type schema:PropertyValue
85 Nbf79d2a3ae2649e7bc6efb582b16f3a0 rdf:first sg:person.011447316711.83
86 rdf:rest N84689a03d0fc4177bbf3d31fd4c7bdc4
87 Nca027694bb7c4d56b10f0451d1d63625 rdf:first sg:person.016251237271.92
88 rdf:rest Nbf79d2a3ae2649e7bc6efb582b16f3a0
89 Nd2ec120593a144ecb7d4054189d9460b schema:issueNumber 3
90 rdf:type schema:PublicationIssue
91 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
92 schema:name Physical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
95 schema:name Condensed Matter Physics
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
98 schema:name Quantum Physics
99 rdf:type schema:DefinedTerm
100 sg:journal.1136692 schema:issn 1063-7826
101 1090-6479
102 schema:name Semiconductors
103 schema:publisher Pleiades Publishing
104 rdf:type schema:Periodical
105 sg:person.011447316711.83 schema:affiliation grid-institutes:grid.4605.7
106 schema:familyName Volodin
107 schema:givenName V. A.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011447316711.83
109 rdf:type schema:Person
110 sg:person.013617030725.51 schema:affiliation grid-institutes:grid.415877.8
111 schema:familyName Tyschenko
112 schema:givenName I. E.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013617030725.51
114 rdf:type schema:Person
115 sg:person.015453656671.90 schema:affiliation grid-institutes:grid.462424.2
116 schema:familyName Khmelnitsky
117 schema:givenName R. A.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015453656671.90
119 rdf:type schema:Person
120 sg:person.016040143647.02 schema:affiliation grid-institutes:grid.415877.8
121 schema:familyName Popov
122 schema:givenName V. P.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016040143647.02
124 rdf:type schema:Person
125 sg:person.016251237271.92 schema:affiliation grid-institutes:grid.4886.2
126 schema:familyName Saraykin
127 schema:givenName V. V.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016251237271.92
129 rdf:type schema:Person
130 sg:pub.10.1134/s106378260611011x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051302416
131 https://doi.org/10.1134/s106378260611011x
132 rdf:type schema:CreativeWork
133 sg:pub.10.1134/s1063782609010114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024458564
134 https://doi.org/10.1134/s1063782609010114
135 rdf:type schema:CreativeWork
136 sg:pub.10.1186/1556-276x-7-561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019393546
137 https://doi.org/10.1186/1556-276x-7-561
138 rdf:type schema:CreativeWork
139 sg:pub.10.1557/proc-486-175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067939843
140 https://doi.org/10.1557/proc-486-175
141 rdf:type schema:CreativeWork
142 grid-institutes:grid.415877.8 schema:alternateName Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
143 schema:name Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
144 rdf:type schema:Organization
145 grid-institutes:grid.4605.7 schema:alternateName Novosibirsk State University, 630090, Novosibirsk, Russia
146 schema:name Novosibirsk State University, 630090, Novosibirsk, Russia
147 Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
148 rdf:type schema:Organization
149 grid-institutes:grid.462424.2 schema:alternateName Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 141190, Fryazino, Moscow region, Russia
150 schema:name Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 141190, Fryazino, Moscow region, Russia
151 Lebedev Physical Institute, Russian Academy of Sciences, 119991, Moscow, Russia
152 rdf:type schema:Organization
153 grid-institutes:grid.4886.2 schema:alternateName Mokerov Institute of Ultra High Frequency Semiconductor Electronics, Russian Academy of Sciences, 117105, Moscow, Russia
154 schema:name Lukin State Research Institute of Physical Problems, 103460, MoscowZelenograd, Russia
155 Mokerov Institute of Ultra High Frequency Semiconductor Electronics, Russian Academy of Sciences, 117105, Moscow, Russia
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...