Influence of the Pore Structure on the Electron Barrier Height of Metal-Ceramic Nanomaterials Based on Gold-Anodic Aluminum Oxide View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

N. M. Ushakov, M. Yu. Vasil’kov, V. R. Shaturnuy

ABSTRACT

The influence of the of the pore structure on the electron barrier height of Au–Al2O3 structures is experimentally studied. The porous structures of anodic aluminum oxide of two types with through pores and pores in the form of a well are investigated. It is shown that, depending on the shape of the pore profile, the deposited thin gold film creates a different height of the electron barrier at the metal-insulator interface. The method of linear optical spectroscopy showed that the height of the barrier for structures with through pores is higher by 2.0 eV. More... »

PAGES

2078-2080

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782618160376

DOI

http://dx.doi.org/10.1134/s1063782618160376

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112393010


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Kotel\u2019nikov Institute of RadioEng. and Electr., Russian Academy of Sciences, 410019, Saratov, Saratov Branch, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ushakov", 
        "givenName": "N. M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Yu. Gagarin Technical State University, 410054, Saratov, Russia", 
            "Kotel\u2019nikov Institute of RadioEng. and Electr., Russian Academy of Sciences, 410019, Saratov, Saratov Branch, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasil\u2019kov", 
        "givenName": "M. Yu.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Kotel\u2019nikov Institute of RadioEng. and Electr., Russian Academy of Sciences, 410019, Saratov, Saratov Branch, Russia", 
            "National Research State University, 410012, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shaturnuy", 
        "givenName": "V. R.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.trac.2012.11.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018111511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2006.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029638836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac500069f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055005847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja049537t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055838120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja049537t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055838120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1435830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057706612"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The influence of the of the pore structure on the electron barrier height of Au\u2013Al2O3 structures is experimentally studied. The porous structures of anodic aluminum oxide of two types with through pores and pores in the form of a well are investigated. It is shown that, depending on the shape of the pore profile, the deposited thin gold film creates a different height of the electron barrier at the metal-insulator interface. The method of linear optical spectroscopy showed that the height of the barrier for structures with through pores is higher by 2.0 eV.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1134/s1063782618160376", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "16", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "name": "Influence of the Pore Structure on the Electron Barrier Height of Metal-Ceramic Nanomaterials Based on Gold-Anodic Aluminum Oxide", 
    "pagination": "2078-2080", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7d3a07a4192b259a307d130da00de4bdd51969a990744fd8fd4b9580b300f168"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782618160376"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112393010"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782618160376", 
      "https://app.dimensions.ai/details/publication/pub.1112393010"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89814_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1063782618160376"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782618160376'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782618160376'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782618160376'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782618160376'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782618160376 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Ne23301092aa7478bb077ede35b237391
4 schema:citation https://doi.org/10.1016/j.pmatsci.2006.07.002
5 https://doi.org/10.1016/j.trac.2012.11.007
6 https://doi.org/10.1021/ac500069f
7 https://doi.org/10.1021/ja049537t
8 https://doi.org/10.1063/1.1435830
9 schema:datePublished 2018-12
10 schema:datePublishedReg 2018-12-01
11 schema:description The influence of the of the pore structure on the electron barrier height of Au–Al2O3 structures is experimentally studied. The porous structures of anodic aluminum oxide of two types with through pores and pores in the form of a well are investigated. It is shown that, depending on the shape of the pore profile, the deposited thin gold film creates a different height of the electron barrier at the metal-insulator interface. The method of linear optical spectroscopy showed that the height of the barrier for structures with through pores is higher by 2.0 eV.
12 schema:genre non_research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N2f9c33beb97e467c81596ad3cbe395d2
16 Nd62fefd5c9a74837bae6c7508271df39
17 sg:journal.1136692
18 schema:name Influence of the Pore Structure on the Electron Barrier Height of Metal-Ceramic Nanomaterials Based on Gold-Anodic Aluminum Oxide
19 schema:pagination 2078-2080
20 schema:productId N2a23ca9a158942398f8ad41763743090
21 N5906b4fbe95a431880a7f8a0eeda6585
22 Na0d52ba4bd834cc4a75fc29fa7fb233a
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112393010
24 https://doi.org/10.1134/s1063782618160376
25 schema:sdDatePublished 2019-04-11T09:59
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Ned08cfb3d8e94841991fbb8ac9c3c3d6
28 schema:url https://link.springer.com/10.1134%2FS1063782618160376
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N2a23ca9a158942398f8ad41763743090 schema:name readcube_id
33 schema:value 7d3a07a4192b259a307d130da00de4bdd51969a990744fd8fd4b9580b300f168
34 rdf:type schema:PropertyValue
35 N2f9c33beb97e467c81596ad3cbe395d2 schema:issueNumber 16
36 rdf:type schema:PublicationIssue
37 N4ecafbb19424494381c62e5c855a627e schema:affiliation https://www.grid.ac/institutes/grid.4886.2
38 schema:familyName Ushakov
39 schema:givenName N. M.
40 rdf:type schema:Person
41 N5906b4fbe95a431880a7f8a0eeda6585 schema:name dimensions_id
42 schema:value pub.1112393010
43 rdf:type schema:PropertyValue
44 N90fecb14adb84ab5b63cc73c23278729 rdf:first N9bbef87125f048f7a49147b4108abd84
45 rdf:rest Ncd153fc1e2804a40b80e90a58e7d1336
46 N9bbef87125f048f7a49147b4108abd84 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
47 schema:familyName Vasil’kov
48 schema:givenName M. Yu.
49 rdf:type schema:Person
50 Na0d52ba4bd834cc4a75fc29fa7fb233a schema:name doi
51 schema:value 10.1134/s1063782618160376
52 rdf:type schema:PropertyValue
53 Nc9665558b58743a8b22f8889f7515249 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
54 schema:familyName Shaturnuy
55 schema:givenName V. R.
56 rdf:type schema:Person
57 Ncd153fc1e2804a40b80e90a58e7d1336 rdf:first Nc9665558b58743a8b22f8889f7515249
58 rdf:rest rdf:nil
59 Nd62fefd5c9a74837bae6c7508271df39 schema:volumeNumber 52
60 rdf:type schema:PublicationVolume
61 Ne23301092aa7478bb077ede35b237391 rdf:first N4ecafbb19424494381c62e5c855a627e
62 rdf:rest N90fecb14adb84ab5b63cc73c23278729
63 Ned08cfb3d8e94841991fbb8ac9c3c3d6 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
66 schema:name Chemical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
69 schema:name Physical Chemistry (incl. Structural)
70 rdf:type schema:DefinedTerm
71 sg:journal.1136692 schema:issn 1063-7826
72 1090-6479
73 schema:name Semiconductors
74 rdf:type schema:Periodical
75 https://doi.org/10.1016/j.pmatsci.2006.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029638836
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1016/j.trac.2012.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018111511
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1021/ac500069f schema:sameAs https://app.dimensions.ai/details/publication/pub.1055005847
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1021/ja049537t schema:sameAs https://app.dimensions.ai/details/publication/pub.1055838120
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1063/1.1435830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057706612
84 rdf:type schema:CreativeWork
85 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
86 schema:name Kotel’nikov Institute of RadioEng. and Electr., Russian Academy of Sciences, 410019, Saratov, Saratov Branch, Russia
87 National Research State University, 410012, Saratov, Russia
88 Yu. Gagarin Technical State University, 410054, Saratov, Russia
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...