On the Intracenter Relaxation of Shallow Arsenic Donors in Stressed Germanium. Population Inversion under Optical Excitation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

V. V. Tsyplenkov, V. N. Shastin

ABSTRACT

The relaxation rates of lower excited states 1s(T), 2p0, 2s, 3p0, and 2p± of arsenic donors in a germanium crystal are calculated upon the interaction with long-wavelength acoustic phonons depending on the uniaxial stress in the crystallographic direction [111]. The populations of states under optical excitation are estimated for calculated times. It is shown theoretically that optical excitation of the medium forms an inverse population of arsenic donor levels and leads to the possibility of the implementation of a four-level laser scheme with the radiative transition between 2p states and the 1s triplet state at zero strain. The estimated value of the expected gain in the medium under optical excitation conditions by CO2 laser radiation in the medium at a donor concentration of 2 × 1015 cm–3 is ~0.35 cm–1 at a frequency of 1.98 THz if the laser transition is 2p± → 1s(T) and 1.25 THz if the laser transition is 2p0 → 1s(T). More... »

PAGES

1573-1580

References to SciGraph publications

Journal

TITLE

Semiconductors

ISSUE

12

VOLUME

52

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782618120254

DOI

http://dx.doi.org/10.1134/s1063782618120254

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109764847


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Physics of Microstructures", 
          "id": "https://www.grid.ac/institutes/grid.425081.a", 
          "name": [
            "Institute for Physics of Microstructures, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsyplenkov", 
        "givenName": "V. V.", 
        "id": "sg:person.016162050577.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016162050577.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Physics of Microstructures", 
          "id": "https://www.grid.ac/institutes/grid.425081.a", 
          "name": [
            "Institute for Physics of Microstructures, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shastin", 
        "givenName": "V. N.", 
        "id": "sg:person.014134175711.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014134175711.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1063782613020152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008312540", 
          "https://doi.org/10.1134/s1063782613020152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/15/27/102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013336398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.4.021009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025362274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.4.021009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025362274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041652427", 
          "https://doi.org/10.1038/nature12011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(67)90022-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042661346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(67)90022-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042661346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046047952", 
          "https://doi.org/10.1038/nnano.2012.21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/p63-183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048619179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.233301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053360070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.233301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053360070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2809374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057871093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.101.944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060417317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.101.944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060417317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.125204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060652297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.125204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060652297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.1138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.1138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2944.571778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061145319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0021364017210147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100620157", 
          "https://doi.org/10.1134/s0021364017210147"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The relaxation rates of lower excited states 1s(T), 2p0, 2s, 3p0, and 2p\u00b1 of arsenic donors in a germanium crystal are calculated upon the interaction with long-wavelength acoustic phonons depending on the uniaxial stress in the crystallographic direction [111]. The populations of states under optical excitation are estimated for calculated times. It is shown theoretically that optical excitation of the medium forms an inverse population of arsenic donor levels and leads to the possibility of the implementation of a four-level laser scheme with the radiative transition between 2p states and the 1s triplet state at zero strain. The estimated value of the expected gain in the medium under optical excitation conditions by CO2 laser radiation in the medium at a donor concentration of 2 \u00d7 1015 cm\u20133 is ~0.35 cm\u20131 at a frequency of 1.98 THz if the laser transition is 2p\u00b1 \u2192 1s(T) and 1.25 THz if the laser transition is 2p0 \u2192 1s(T).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063782618120254", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "name": "On the Intracenter Relaxation of Shallow Arsenic Donors in Stressed Germanium. Population Inversion under Optical Excitation", 
    "pagination": "1573-1580", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9e1c5bbf055015784655164f37f717df3c98920faa3607ed84c424850c3e9246"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782618120254"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109764847"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782618120254", 
      "https://app.dimensions.ai/details/publication/pub.1109764847"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000610.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1063782618120254"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782618120254'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782618120254'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782618120254'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782618120254'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782618120254 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author Nedc3b5fdfb43440fa3016438b99c7783
4 schema:citation sg:pub.10.1038/nature12011
5 sg:pub.10.1038/nnano.2012.21
6 sg:pub.10.1134/s0021364017210147
7 sg:pub.10.1134/s1063782613020152
8 https://doi.org/10.1016/0039-6028(67)90022-2
9 https://doi.org/10.1063/1.2809374
10 https://doi.org/10.1088/0953-8984/15/27/102
11 https://doi.org/10.1103/physrev.101.944
12 https://doi.org/10.1103/physrevb.69.233301
13 https://doi.org/10.1103/physrevb.94.125204
14 https://doi.org/10.1103/physrevlett.64.1138
15 https://doi.org/10.1103/physrevx.4.021009
16 https://doi.org/10.1109/2944.571778
17 https://doi.org/10.1139/p63-183
18 schema:datePublished 2018-12
19 schema:datePublishedReg 2018-12-01
20 schema:description The relaxation rates of lower excited states 1s(T), 2p0, 2s, 3p0, and 2p± of arsenic donors in a germanium crystal are calculated upon the interaction with long-wavelength acoustic phonons depending on the uniaxial stress in the crystallographic direction [111]. The populations of states under optical excitation are estimated for calculated times. It is shown theoretically that optical excitation of the medium forms an inverse population of arsenic donor levels and leads to the possibility of the implementation of a four-level laser scheme with the radiative transition between 2p states and the 1s triplet state at zero strain. The estimated value of the expected gain in the medium under optical excitation conditions by CO2 laser radiation in the medium at a donor concentration of 2 × 1015 cm–3 is ~0.35 cm–1 at a frequency of 1.98 THz if the laser transition is 2p± → 1s(T) and 1.25 THz if the laser transition is 2p0 → 1s(T).
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N5596b8aadc9748a6b768b959ab0f689b
25 Naede7e688f4f454f9a212896ca298f60
26 sg:journal.1136692
27 schema:name On the Intracenter Relaxation of Shallow Arsenic Donors in Stressed Germanium. Population Inversion under Optical Excitation
28 schema:pagination 1573-1580
29 schema:productId N697f66f67bf049519ddccb2795b56a59
30 N7fb68593438a489f85f95b9bf5c455ba
31 Na49e24c0815a435a8f2735d4e82182ee
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109764847
33 https://doi.org/10.1134/s1063782618120254
34 schema:sdDatePublished 2019-04-10T22:49
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Na023d3e1f9b749d884c8768469627237
37 schema:url https://link.springer.com/10.1134%2FS1063782618120254
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N5596b8aadc9748a6b768b959ab0f689b schema:issueNumber 12
42 rdf:type schema:PublicationIssue
43 N697f66f67bf049519ddccb2795b56a59 schema:name doi
44 schema:value 10.1134/s1063782618120254
45 rdf:type schema:PropertyValue
46 N7fb68593438a489f85f95b9bf5c455ba schema:name dimensions_id
47 schema:value pub.1109764847
48 rdf:type schema:PropertyValue
49 Na023d3e1f9b749d884c8768469627237 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 Na1de1b1bfbfe41f89a42621f14116b81 rdf:first sg:person.014134175711.41
52 rdf:rest rdf:nil
53 Na49e24c0815a435a8f2735d4e82182ee schema:name readcube_id
54 schema:value 9e1c5bbf055015784655164f37f717df3c98920faa3607ed84c424850c3e9246
55 rdf:type schema:PropertyValue
56 Naede7e688f4f454f9a212896ca298f60 schema:volumeNumber 52
57 rdf:type schema:PublicationVolume
58 Nedc3b5fdfb43440fa3016438b99c7783 rdf:first sg:person.016162050577.10
59 rdf:rest Na1de1b1bfbfe41f89a42621f14116b81
60 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
61 schema:name Physical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
64 schema:name Optical Physics
65 rdf:type schema:DefinedTerm
66 sg:journal.1136692 schema:issn 1063-7826
67 1090-6479
68 schema:name Semiconductors
69 rdf:type schema:Periodical
70 sg:person.014134175711.41 schema:affiliation https://www.grid.ac/institutes/grid.425081.a
71 schema:familyName Shastin
72 schema:givenName V. N.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014134175711.41
74 rdf:type schema:Person
75 sg:person.016162050577.10 schema:affiliation https://www.grid.ac/institutes/grid.425081.a
76 schema:familyName Tsyplenkov
77 schema:givenName V. V.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016162050577.10
79 rdf:type schema:Person
80 sg:pub.10.1038/nature12011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041652427
81 https://doi.org/10.1038/nature12011
82 rdf:type schema:CreativeWork
83 sg:pub.10.1038/nnano.2012.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046047952
84 https://doi.org/10.1038/nnano.2012.21
85 rdf:type schema:CreativeWork
86 sg:pub.10.1134/s0021364017210147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100620157
87 https://doi.org/10.1134/s0021364017210147
88 rdf:type schema:CreativeWork
89 sg:pub.10.1134/s1063782613020152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008312540
90 https://doi.org/10.1134/s1063782613020152
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/0039-6028(67)90022-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042661346
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1063/1.2809374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057871093
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1088/0953-8984/15/27/102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013336398
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/physrev.101.944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060417317
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/physrevb.69.233301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053360070
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1103/physrevb.94.125204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060652297
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1103/physrevlett.64.1138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060800169
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1103/physrevx.4.021009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025362274
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/2944.571778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061145319
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1139/p63-183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048619179
111 rdf:type schema:CreativeWork
112 https://www.grid.ac/institutes/grid.425081.a schema:alternateName Institute for Physics of Microstructures
113 schema:name Institute for Physics of Microstructures, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...