Violation of Local Electroneutrality in the Quantum Well of a Semiconductor Laser with Asymmetric Barrier Layers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11-07

AUTHORS

L. V. Asryan, F. I. Zubov, Yu. S. BalezinaPolubavkina, E. I. Moiseev, M. E. Muretova, N. V. Kryzhanovskaya, M. V. Maximov, A. E. Zhukov

ABSTRACT

A self-consistent model for calculating the threshold and high-power characteristics of semiconductor quantum well lasers with asymmetric barrier layers is developed. The model, which is based on a system of rate equations, uses the universal condition of global charge neutrality in the laser structure. The electron and hole concentrations in the waveguide region and in the quantum well (QW) and the concentration of photons of stimulated emission are calculated. The local neutrality in the QW is shown to be strongly violated, especially at high injection currents. The violation of neutrality in a QW makes the electron and hole concentrations there dependent on the injection current under lasing conditions: in the structures under consideration, the electron concentration in the QW decreases while the hole concentration increases with increasing injection current. In the case of the ideal functioning of asymmetric barrier layers, when electron–hole recombination in the waveguide region is completely suppressed, the violation of neutrality in the QW has almost no effect on the dependence of the output optical power on the injection current: the quantum efficiency is close to unity and the light–current characteristic is linear. Nevertheless, the violation of neutrality in the QW causes weakening of the temperature dependence of the threshold current and, hence, an increase in the characteristic temperature T0 of the laser. More... »

PAGES

1621-1629

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782618120059

DOI

http://dx.doi.org/10.1134/s1063782618120059

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109764848


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Virginia Polytechnic Institute and State University, 24061, Virginia, Blacksburg, USA", 
          "id": "http://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Virginia Polytechnic Institute and State University, 24061, Virginia, Blacksburg, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Asryan", 
        "givenName": "L. V.", 
        "id": "sg:person.016463244066.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016463244066.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zubov", 
        "givenName": "F. I.", 
        "id": "sg:person.016266056106.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016266056106.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "BalezinaPolubavkina", 
        "givenName": "Yu. S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moiseev", 
        "givenName": "E. I.", 
        "id": "sg:person.01034073417.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034073417.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muretova", 
        "givenName": "M. E.", 
        "id": "sg:person.012402277250.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012402277250.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kryzhanovskaya", 
        "givenName": "N. V.", 
        "id": "sg:person.014661303112.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014661303112.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maximov", 
        "givenName": "M. V.", 
        "id": "sg:person.015106205514.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015106205514.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhukov", 
        "givenName": "A. E.", 
        "id": "sg:person.011315427765.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011315427765.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1063782616100055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004821354", 
          "https://doi.org/10.1134/s1063782616100055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782617070326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090325047", 
          "https://doi.org/10.1134/s1063782617070326"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11-07", 
    "datePublishedReg": "2018-11-07", 
    "description": "A self-consistent model for calculating the threshold and high-power characteristics of semiconductor quantum well lasers with asymmetric barrier layers is developed. The model, which is based on a system of rate equations, uses the universal condition of global charge neutrality in the laser structure. The electron and hole concentrations in the waveguide region and in the quantum well (QW) and the concentration of photons of stimulated emission are calculated. The local neutrality in the QW is shown to be strongly violated, especially at high injection currents. The violation of neutrality in a QW makes the electron and hole concentrations there dependent on the injection current under lasing conditions: in the structures under consideration, the electron concentration in the QW decreases while the hole concentration increases with increasing injection current. In the case of the ideal functioning of asymmetric barrier layers, when electron\u2013hole recombination in the waveguide region is completely suppressed, the violation of neutrality in the QW has almost no effect on the dependence of the output optical power on the injection current: the quantum efficiency is close to unity and the light\u2013current characteristic is linear. Nevertheless, the violation of neutrality in the QW causes weakening of the temperature dependence of the threshold current and, hence, an increase in the characteristic temperature T0 of the laser.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063782618120059", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4896436", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "keywords": [
      "asymmetric barrier layers", 
      "violation of neutrality", 
      "waveguide region", 
      "injection current", 
      "hole concentration", 
      "output optical power", 
      "light-current characteristics", 
      "barrier layer", 
      "high injection currents", 
      "global charge neutrality", 
      "characteristic temperature T0", 
      "self-consistent model", 
      "QWs decreases", 
      "electron-hole recombination", 
      "semiconductor quantum", 
      "laser structures", 
      "semiconductor lasers", 
      "optical power", 
      "quantum efficiency", 
      "QW", 
      "electron concentration", 
      "charge neutrality", 
      "local neutrality", 
      "quantum", 
      "laser", 
      "electrons", 
      "temperature T0", 
      "temperature dependence", 
      "rate equations", 
      "local electroneutrality", 
      "high power characteristics", 
      "photons", 
      "dependence", 
      "layer", 
      "current", 
      "violation", 
      "emission", 
      "universal condition", 
      "threshold", 
      "ideal functioning", 
      "structure", 
      "recombination", 
      "region", 
      "electroneutrality", 
      "power", 
      "neutrality", 
      "unity", 
      "equations", 
      "T0", 
      "model", 
      "efficiency", 
      "characteristics", 
      "system", 
      "conditions", 
      "concentration", 
      "effect", 
      "weakening", 
      "injection", 
      "increase", 
      "decrease", 
      "cases", 
      "consideration", 
      "functioning"
    ], 
    "name": "Violation of Local Electroneutrality in the Quantum Well of a Semiconductor Laser with Asymmetric Barrier Layers", 
    "pagination": "1621-1629", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109764848"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782618120059"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782618120059", 
      "https://app.dimensions.ai/details/publication/pub.1109764848"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_790.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063782618120059"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782618120059'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782618120059'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782618120059'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782618120059'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      22 PREDICATES      90 URIs      80 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782618120059 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Ndf7b6238a2a044c7a00bc323ce7033a9
4 schema:citation sg:pub.10.1134/s1063782616100055
5 sg:pub.10.1134/s1063782617070326
6 schema:datePublished 2018-11-07
7 schema:datePublishedReg 2018-11-07
8 schema:description A self-consistent model for calculating the threshold and high-power characteristics of semiconductor quantum well lasers with asymmetric barrier layers is developed. The model, which is based on a system of rate equations, uses the universal condition of global charge neutrality in the laser structure. The electron and hole concentrations in the waveguide region and in the quantum well (QW) and the concentration of photons of stimulated emission are calculated. The local neutrality in the QW is shown to be strongly violated, especially at high injection currents. The violation of neutrality in a QW makes the electron and hole concentrations there dependent on the injection current under lasing conditions: in the structures under consideration, the electron concentration in the QW decreases while the hole concentration increases with increasing injection current. In the case of the ideal functioning of asymmetric barrier layers, when electron–hole recombination in the waveguide region is completely suppressed, the violation of neutrality in the QW has almost no effect on the dependence of the output optical power on the injection current: the quantum efficiency is close to unity and the light–current characteristic is linear. Nevertheless, the violation of neutrality in the QW causes weakening of the temperature dependence of the threshold current and, hence, an increase in the characteristic temperature T0 of the laser.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N3ddd276048bb4ce9bc03468ecca79eae
13 Nfcb94f54826849f6bf35fddb1ec0095e
14 sg:journal.1136692
15 schema:keywords QW
16 QWs decreases
17 T0
18 asymmetric barrier layers
19 barrier layer
20 cases
21 characteristic temperature T0
22 characteristics
23 charge neutrality
24 concentration
25 conditions
26 consideration
27 current
28 decrease
29 dependence
30 effect
31 efficiency
32 electron concentration
33 electron-hole recombination
34 electroneutrality
35 electrons
36 emission
37 equations
38 functioning
39 global charge neutrality
40 high injection currents
41 high power characteristics
42 hole concentration
43 ideal functioning
44 increase
45 injection
46 injection current
47 laser
48 laser structures
49 layer
50 light-current characteristics
51 local electroneutrality
52 local neutrality
53 model
54 neutrality
55 optical power
56 output optical power
57 photons
58 power
59 quantum
60 quantum efficiency
61 rate equations
62 recombination
63 region
64 self-consistent model
65 semiconductor lasers
66 semiconductor quantum
67 structure
68 system
69 temperature T0
70 temperature dependence
71 threshold
72 unity
73 universal condition
74 violation
75 violation of neutrality
76 waveguide region
77 weakening
78 schema:name Violation of Local Electroneutrality in the Quantum Well of a Semiconductor Laser with Asymmetric Barrier Layers
79 schema:pagination 1621-1629
80 schema:productId Nc235ed308de14bcdb24cc1afc87634dc
81 Nfcd610e7e1b340c99ddf1bd3150945f2
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109764848
83 https://doi.org/10.1134/s1063782618120059
84 schema:sdDatePublished 2022-05-10T10:22
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N78786b037e634ecbba03fbae6b92318f
87 schema:url https://doi.org/10.1134/s1063782618120059
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N218fa1a818014e67873545304a1157aa rdf:first sg:person.015106205514.66
92 rdf:rest Nd0dc7b0578a443699d47dae18a19d6ff
93 N3ddd276048bb4ce9bc03468ecca79eae schema:issueNumber 12
94 rdf:type schema:PublicationIssue
95 N5b8422fc587c484ea66c1afbcddfb452 rdf:first sg:person.012402277250.03
96 rdf:rest Nbb4f47c81f6a41cbb46297d58fec4ea3
97 N6672aacedc6c4245bb99550d24eba471 schema:affiliation grid-institutes:grid.4886.2
98 schema:familyName BalezinaPolubavkina
99 schema:givenName Yu. S.
100 rdf:type schema:Person
101 N78786b037e634ecbba03fbae6b92318f schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 Nbb4f47c81f6a41cbb46297d58fec4ea3 rdf:first sg:person.014661303112.10
104 rdf:rest N218fa1a818014e67873545304a1157aa
105 Nc235ed308de14bcdb24cc1afc87634dc schema:name doi
106 schema:value 10.1134/s1063782618120059
107 rdf:type schema:PropertyValue
108 Ncc1d2c4f3bfa4a6395b95437c692940f rdf:first sg:person.016266056106.43
109 rdf:rest Nda6e1bee56954c7ca2eab250332bceee
110 Nd0dc7b0578a443699d47dae18a19d6ff rdf:first sg:person.011315427765.17
111 rdf:rest rdf:nil
112 Nd2d6f5caf7234ef79e774ece86fbb4b4 rdf:first sg:person.01034073417.04
113 rdf:rest N5b8422fc587c484ea66c1afbcddfb452
114 Nda6e1bee56954c7ca2eab250332bceee rdf:first N6672aacedc6c4245bb99550d24eba471
115 rdf:rest Nd2d6f5caf7234ef79e774ece86fbb4b4
116 Ndf7b6238a2a044c7a00bc323ce7033a9 rdf:first sg:person.016463244066.32
117 rdf:rest Ncc1d2c4f3bfa4a6395b95437c692940f
118 Nfcb94f54826849f6bf35fddb1ec0095e schema:volumeNumber 52
119 rdf:type schema:PublicationVolume
120 Nfcd610e7e1b340c99ddf1bd3150945f2 schema:name dimensions_id
121 schema:value pub.1109764848
122 rdf:type schema:PropertyValue
123 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
124 schema:name Physical Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
127 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
128 rdf:type schema:DefinedTerm
129 sg:grant.4896436 http://pending.schema.org/fundedItem sg:pub.10.1134/s1063782618120059
130 rdf:type schema:MonetaryGrant
131 sg:journal.1136692 schema:issn 1063-7826
132 1090-6479
133 schema:name Semiconductors
134 schema:publisher Pleiades Publishing
135 rdf:type schema:Periodical
136 sg:person.01034073417.04 schema:affiliation grid-institutes:grid.4886.2
137 schema:familyName Moiseev
138 schema:givenName E. I.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034073417.04
140 rdf:type schema:Person
141 sg:person.011315427765.17 schema:affiliation grid-institutes:grid.4886.2
142 schema:familyName Zhukov
143 schema:givenName A. E.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011315427765.17
145 rdf:type schema:Person
146 sg:person.012402277250.03 schema:affiliation grid-institutes:grid.4886.2
147 schema:familyName Muretova
148 schema:givenName M. E.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012402277250.03
150 rdf:type schema:Person
151 sg:person.014661303112.10 schema:affiliation grid-institutes:grid.4886.2
152 schema:familyName Kryzhanovskaya
153 schema:givenName N. V.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014661303112.10
155 rdf:type schema:Person
156 sg:person.015106205514.66 schema:affiliation grid-institutes:grid.4886.2
157 schema:familyName Maximov
158 schema:givenName M. V.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015106205514.66
160 rdf:type schema:Person
161 sg:person.016266056106.43 schema:affiliation grid-institutes:grid.4886.2
162 schema:familyName Zubov
163 schema:givenName F. I.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016266056106.43
165 rdf:type schema:Person
166 sg:person.016463244066.32 schema:affiliation grid-institutes:grid.438526.e
167 schema:familyName Asryan
168 schema:givenName L. V.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016463244066.32
170 rdf:type schema:Person
171 sg:pub.10.1134/s1063782616100055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004821354
172 https://doi.org/10.1134/s1063782616100055
173 rdf:type schema:CreativeWork
174 sg:pub.10.1134/s1063782617070326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090325047
175 https://doi.org/10.1134/s1063782617070326
176 rdf:type schema:CreativeWork
177 grid-institutes:grid.438526.e schema:alternateName Virginia Polytechnic Institute and State University, 24061, Virginia, Blacksburg, USA
178 schema:name Virginia Polytechnic Institute and State University, 24061, Virginia, Blacksburg, USA
179 rdf:type schema:Organization
180 grid-institutes:grid.4886.2 schema:alternateName St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia
181 schema:name St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...