Transition between Electron Localization and Antilocalization and Manifestation of the Berry Phase in Graphene on a SiC Surface View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11-07

AUTHORS

N. V. Agrinskaya, A. A. Lebedev, S. P. Lebedev, M. A. Shakhov, E. Lahderanta

ABSTRACT

It is shown that the transport properties of graphitized silicon carbide are controlled by a surface graphene layer heavily doped with electrons. In weak magnetic fields and at low temperatures, a negative magnetoresistance is observed due to weak localization. A crossover in the magnetoresistance from weak localization to weak antilocalization (the latter is the manifestation of the isospin in graphene) is observed for the first time in samples of this kind at elevated temperatures. A pronounced pattern of Shubnikov–de Haas oscillations is observed in strong magnetic fields (up to 30 T). This pattern demonstrated fourfold carrier spectrum degeneracy due to the double spin and double valley degeneracies. Also, the manifestation of the Berry phase is observed. The effective electron mass is estimated to be m* = 0.08m0, which is characteristic of graphene with a high carrier concentration. More... »

PAGES

1616-1620

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782618120023

DOI

http://dx.doi.org/10.1134/s1063782618120023

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109764844


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Agrinskaya", 
        "givenName": "N. V.", 
        "id": "sg:person.010234342634.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010234342634.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lebedev", 
        "givenName": "A. A.", 
        "id": "sg:person.011264364575.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011264364575.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ITMO University, 197101, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.35915.3b", 
          "name": [
            "ITMO University, 197101, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lebedev", 
        "givenName": "S. P.", 
        "id": "sg:person.012160272645.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160272645.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shakhov", 
        "givenName": "M. A.", 
        "id": "sg:person.016311536257.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311536257.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Physics, Lappeenranta University of Technology, Lappeenranta, Finland", 
          "id": "http://www.grid.ac/institutes/grid.12332.31", 
          "name": [
            "Department of Mathematics and Physics, Lappeenranta University of Technology, Lappeenranta, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lahderanta", 
        "givenName": "E.", 
        "id": "sg:person.01331344646.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331344646.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11-07", 
    "datePublishedReg": "2018-11-07", 
    "description": "It is shown that the transport properties of graphitized silicon carbide are controlled by a surface graphene layer heavily doped with electrons. In weak magnetic fields and at low temperatures, a negative magnetoresistance is observed due to weak localization. A crossover in the magnetoresistance from weak localization to weak antilocalization (the latter is the manifestation of the isospin in graphene) is observed for the first time in samples of this kind at elevated temperatures. A pronounced pattern of Shubnikov\u2013de Haas oscillations is observed in strong magnetic fields (up to 30 T). This pattern demonstrated fourfold carrier spectrum degeneracy due to the double spin and double valley degeneracies. Also, the manifestation of the Berry phase is observed. The effective electron mass is estimated to be m* = 0.08m0, which is characteristic of graphene with a high carrier concentration.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063782618120023", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "keywords": [
      "magnetic field", 
      "Berry phase", 
      "weak localization", 
      "Shubnikov-de Haas oscillations", 
      "strong magnetic field", 
      "effective electron mass", 
      "weak magnetic field", 
      "surface graphene layers", 
      "high carrier concentration", 
      "Haas oscillations", 
      "electron mass", 
      "weak antilocalization", 
      "valley degeneracy", 
      "electron localization", 
      "graphene layers", 
      "double spin", 
      "SiC surface", 
      "carrier concentration", 
      "negative magnetoresistance", 
      "antilocalization", 
      "transport properties", 
      "graphene", 
      "silicon carbide", 
      "degeneracy", 
      "magnetoresistance", 
      "low temperatures", 
      "electrons", 
      "field", 
      "spin", 
      "spectrum degeneracy", 
      "first time", 
      "oscillations", 
      "temperature", 
      "transition", 
      "phase", 
      "elevated temperatures", 
      "layer", 
      "surface", 
      "crossover", 
      "mass", 
      "carbide", 
      "properties", 
      "localization", 
      "samples", 
      "time", 
      "kind", 
      "patterns", 
      "concentration", 
      "manifestations", 
      "pronounced pattern", 
      "fourfold carrier spectrum degeneracy", 
      "carrier spectrum degeneracy", 
      "double valley degeneracies"
    ], 
    "name": "Transition between Electron Localization and Antilocalization and Manifestation of the Berry Phase in Graphene on a SiC Surface", 
    "pagination": "1616-1620", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109764844"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782618120023"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782618120023", 
      "https://app.dimensions.ai/details/publication/pub.1109764844"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_767.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063782618120023"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782618120023'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782618120023'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782618120023'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782618120023'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      22 PREDICATES      81 URIs      70 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782618120023 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 anzsrc-for:0206
4 schema:author N186f7c089e47479d87b9365c35a23e7a
5 schema:citation sg:pub.10.1038/nature04233
6 sg:pub.10.1038/nature04235
7 schema:datePublished 2018-11-07
8 schema:datePublishedReg 2018-11-07
9 schema:description It is shown that the transport properties of graphitized silicon carbide are controlled by a surface graphene layer heavily doped with electrons. In weak magnetic fields and at low temperatures, a negative magnetoresistance is observed due to weak localization. A crossover in the magnetoresistance from weak localization to weak antilocalization (the latter is the manifestation of the isospin in graphene) is observed for the first time in samples of this kind at elevated temperatures. A pronounced pattern of Shubnikov–de Haas oscillations is observed in strong magnetic fields (up to 30 T). This pattern demonstrated fourfold carrier spectrum degeneracy due to the double spin and double valley degeneracies. Also, the manifestation of the Berry phase is observed. The effective electron mass is estimated to be m* = 0.08m0, which is characteristic of graphene with a high carrier concentration.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N1532f582ab8c4d0aa84151ef9508a10d
14 N7ee4a200a5784df9964562aaad401766
15 sg:journal.1136692
16 schema:keywords Berry phase
17 Haas oscillations
18 Shubnikov-de Haas oscillations
19 SiC surface
20 antilocalization
21 carbide
22 carrier concentration
23 carrier spectrum degeneracy
24 concentration
25 crossover
26 degeneracy
27 double spin
28 double valley degeneracies
29 effective electron mass
30 electron localization
31 electron mass
32 electrons
33 elevated temperatures
34 field
35 first time
36 fourfold carrier spectrum degeneracy
37 graphene
38 graphene layers
39 high carrier concentration
40 kind
41 layer
42 localization
43 low temperatures
44 magnetic field
45 magnetoresistance
46 manifestations
47 mass
48 negative magnetoresistance
49 oscillations
50 patterns
51 phase
52 pronounced pattern
53 properties
54 samples
55 silicon carbide
56 spectrum degeneracy
57 spin
58 strong magnetic field
59 surface
60 surface graphene layers
61 temperature
62 time
63 transition
64 transport properties
65 valley degeneracy
66 weak antilocalization
67 weak localization
68 weak magnetic field
69 schema:name Transition between Electron Localization and Antilocalization and Manifestation of the Berry Phase in Graphene on a SiC Surface
70 schema:pagination 1616-1620
71 schema:productId N0ee9400cfbce4b47a08f3c0448c591fe
72 N188a6df11c604ef78b428067047b4cce
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109764844
74 https://doi.org/10.1134/s1063782618120023
75 schema:sdDatePublished 2021-11-01T18:32
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher Nb9f0ace3ff0145d796609ae4d934618f
78 schema:url https://doi.org/10.1134/s1063782618120023
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N0ee9400cfbce4b47a08f3c0448c591fe schema:name doi
83 schema:value 10.1134/s1063782618120023
84 rdf:type schema:PropertyValue
85 N1532f582ab8c4d0aa84151ef9508a10d schema:volumeNumber 52
86 rdf:type schema:PublicationVolume
87 N186f7c089e47479d87b9365c35a23e7a rdf:first sg:person.010234342634.34
88 rdf:rest Na07c84d7bf0a4e1189f12ab0dc1c3619
89 N188a6df11c604ef78b428067047b4cce schema:name dimensions_id
90 schema:value pub.1109764844
91 rdf:type schema:PropertyValue
92 N2e4749677b534ede932a5d2564dd2b32 rdf:first sg:person.01331344646.44
93 rdf:rest rdf:nil
94 N7ee4a200a5784df9964562aaad401766 schema:issueNumber 12
95 rdf:type schema:PublicationIssue
96 Na07c84d7bf0a4e1189f12ab0dc1c3619 rdf:first sg:person.011264364575.18
97 rdf:rest Nf8565f9086f945c597f35469de0708fb
98 Nb9f0ace3ff0145d796609ae4d934618f schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 Nc7cee03f9d1942a0b8074c346e3e0632 rdf:first sg:person.016311536257.45
101 rdf:rest N2e4749677b534ede932a5d2564dd2b32
102 Nf8565f9086f945c597f35469de0708fb rdf:first sg:person.012160272645.18
103 rdf:rest Nc7cee03f9d1942a0b8074c346e3e0632
104 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
105 schema:name Physical Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
108 schema:name Condensed Matter Physics
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
111 schema:name Quantum Physics
112 rdf:type schema:DefinedTerm
113 sg:journal.1136692 schema:issn 1063-7826
114 1090-6479
115 schema:name Semiconductors
116 schema:publisher Pleiades Publishing
117 rdf:type schema:Periodical
118 sg:person.010234342634.34 schema:affiliation grid-institutes:grid.423485.c
119 schema:familyName Agrinskaya
120 schema:givenName N. V.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010234342634.34
122 rdf:type schema:Person
123 sg:person.011264364575.18 schema:affiliation grid-institutes:grid.423485.c
124 schema:familyName Lebedev
125 schema:givenName A. A.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011264364575.18
127 rdf:type schema:Person
128 sg:person.012160272645.18 schema:affiliation grid-institutes:grid.35915.3b
129 schema:familyName Lebedev
130 schema:givenName S. P.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012160272645.18
132 rdf:type schema:Person
133 sg:person.01331344646.44 schema:affiliation grid-institutes:grid.12332.31
134 schema:familyName Lahderanta
135 schema:givenName E.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331344646.44
137 rdf:type schema:Person
138 sg:person.016311536257.45 schema:affiliation grid-institutes:grid.423485.c
139 schema:familyName Shakhov
140 schema:givenName M. A.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016311536257.45
142 rdf:type schema:Person
143 sg:pub.10.1038/nature04233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061831
144 https://doi.org/10.1038/nature04233
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nature04235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009714128
147 https://doi.org/10.1038/nature04235
148 rdf:type schema:CreativeWork
149 grid-institutes:grid.12332.31 schema:alternateName Department of Mathematics and Physics, Lappeenranta University of Technology, Lappeenranta, Finland
150 schema:name Department of Mathematics and Physics, Lappeenranta University of Technology, Lappeenranta, Finland
151 rdf:type schema:Organization
152 grid-institutes:grid.35915.3b schema:alternateName ITMO University, 197101, St. Petersburg, Russia
153 schema:name ITMO University, 197101, St. Petersburg, Russia
154 rdf:type schema:Organization
155 grid-institutes:grid.423485.c schema:alternateName Ioffe Institute, 194021, St. Petersburg, Russia
156 schema:name Ioffe Institute, 194021, St. Petersburg, Russia
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...