In0.8Ga0.2As Quantum Dots for GaAs Solar Cells: Metal-Organic Vapor-Phase Epitaxy Growth Peculiarities and Properties View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-06-07

AUTHORS

R. A. Salii, I. S. Kosarev, S. A. Mintairov, A. M. Nadtochiy, M. Z. Shvarts, N. A. Kalyuzhnyy

ABSTRACT

The growth peculiarities of In0.8Ga0.2As quantum dots and their arrays on GaAs surface by metalorganic vapor-phase epitaxy are investigated. The bimodal size distribution of In0.8Ga0.2As quantum dots is established from the photoluminescence spectra recorded at different temperatures. The growth parameters were determined at which the stacking of 20 In0.8Ga0.2As quantum-dot layers in the active area of a GaAs solar cell makes it possible to enhance the photogenerated current by 0.97 and 0.77 mA/cm2 for space and terrestrial solar spectra, respectively, with the high quality of the p–n junction retained. The photogenerated current in a solar cell with quantum dots is higher than in the reference GaAs structure by ~1% with regard to nonradiative-recombination loss originating from stresses induced by the quantum-dot array. More... »

PAGES

870-876

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782618070199

DOI

http://dx.doi.org/10.1134/s1063782618070199

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104465366


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salii", 
        "givenName": "R. A.", 
        "id": "sg:person.016373405407.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016373405407.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kosarev", 
        "givenName": "I. S.", 
        "id": "sg:person.015150741574.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015150741574.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mintairov", 
        "givenName": "S. A.", 
        "id": "sg:person.07536566153.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07536566153.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Ioffe Institute, 194021, St. Petersburg, Russia", 
            "St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nadtochiy", 
        "givenName": "A. M.", 
        "id": "sg:person.01114776037.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114776037.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shvarts", 
        "givenName": "M. Z.", 
        "id": "sg:person.016332220465.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016332220465.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kalyuzhnyy", 
        "givenName": "N. A.", 
        "id": "sg:person.014537453054.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014537453054.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1063782609040204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040830840", 
          "https://doi.org/10.1134/s1063782609040204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1766381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041911429", 
          "https://doi.org/10.1134/1.1766381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00901283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014330166", 
          "https://doi.org/10.1007/bf00901283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782615080175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017288549", 
          "https://doi.org/10.1134/s1063782615080175"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06-07", 
    "datePublishedReg": "2018-06-07", 
    "description": "The growth peculiarities of In0.8Ga0.2As quantum dots and their arrays on GaAs surface by metalorganic vapor-phase epitaxy are investigated. The bimodal size distribution of In0.8Ga0.2As quantum dots is established from the photoluminescence spectra recorded at different temperatures. The growth parameters were determined at which the stacking of 20 In0.8Ga0.2As quantum-dot layers in the active area of a GaAs solar cell makes it possible to enhance the photogenerated current by 0.97 and 0.77 mA/cm2 for space and terrestrial solar spectra, respectively, with the high quality of the p\u2013n junction retained. The photogenerated current in a solar cell with quantum dots is higher than in the reference GaAs structure by ~1% with regard to nonradiative-recombination loss originating from stresses induced by the quantum-dot array.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063782618070199", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "keywords": [
      "GaAs solar cells", 
      "solar cells", 
      "metalorganic vapor phase epitaxy", 
      "mA/cm2", 
      "nonradiative recombination loss", 
      "Metal-Organic Vapor", 
      "vapor phase epitaxy", 
      "growth peculiarities", 
      "terrestrial solar spectrum", 
      "GaAs structures", 
      "bimodal size distribution", 
      "GaAs surface", 
      "quantum dot layers", 
      "quantum dots", 
      "solar spectrum", 
      "size distribution", 
      "different temperatures", 
      "active area", 
      "photoluminescence spectra", 
      "current", 
      "quantum dot arrays", 
      "array", 
      "epitaxy", 
      "high quality", 
      "vapor", 
      "dots", 
      "cm2", 
      "layer", 
      "temperature", 
      "surface", 
      "properties", 
      "parameters", 
      "stress", 
      "growth parameters", 
      "structure", 
      "stacking", 
      "spectra", 
      "distribution", 
      "junction", 
      "peculiarities", 
      "loss", 
      "area", 
      "quality", 
      "space", 
      "regard", 
      "cells"
    ], 
    "name": "In0.8Ga0.2As Quantum Dots for GaAs Solar Cells: Metal-Organic Vapor-Phase Epitaxy Growth Peculiarities and Properties", 
    "pagination": "870-876", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104465366"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782618070199"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782618070199", 
      "https://app.dimensions.ai/details/publication/pub.1104465366"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_758.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063782618070199"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782618070199'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782618070199'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782618070199'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782618070199'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      22 PREDICATES      76 URIs      63 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782618070199 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 anzsrc-for:0206
4 schema:author N49093c8f3ba042b68d384c7a7ee03076
5 schema:citation sg:pub.10.1007/bf00901283
6 sg:pub.10.1134/1.1766381
7 sg:pub.10.1134/s1063782609040204
8 sg:pub.10.1134/s1063782615080175
9 schema:datePublished 2018-06-07
10 schema:datePublishedReg 2018-06-07
11 schema:description The growth peculiarities of In0.8Ga0.2As quantum dots and their arrays on GaAs surface by metalorganic vapor-phase epitaxy are investigated. The bimodal size distribution of In0.8Ga0.2As quantum dots is established from the photoluminescence spectra recorded at different temperatures. The growth parameters were determined at which the stacking of 20 In0.8Ga0.2As quantum-dot layers in the active area of a GaAs solar cell makes it possible to enhance the photogenerated current by 0.97 and 0.77 mA/cm2 for space and terrestrial solar spectra, respectively, with the high quality of the p–n junction retained. The photogenerated current in a solar cell with quantum dots is higher than in the reference GaAs structure by ~1% with regard to nonradiative-recombination loss originating from stresses induced by the quantum-dot array.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N7c9c8180102647e8b93455d765babe26
16 Nde6a9e4af864407bb92cc8b1e4e7a1d6
17 sg:journal.1136692
18 schema:keywords GaAs solar cells
19 GaAs structures
20 GaAs surface
21 Metal-Organic Vapor
22 active area
23 area
24 array
25 bimodal size distribution
26 cells
27 cm2
28 current
29 different temperatures
30 distribution
31 dots
32 epitaxy
33 growth parameters
34 growth peculiarities
35 high quality
36 junction
37 layer
38 loss
39 mA/cm2
40 metalorganic vapor phase epitaxy
41 nonradiative recombination loss
42 parameters
43 peculiarities
44 photoluminescence spectra
45 properties
46 quality
47 quantum dot arrays
48 quantum dot layers
49 quantum dots
50 regard
51 size distribution
52 solar cells
53 solar spectrum
54 space
55 spectra
56 stacking
57 stress
58 structure
59 surface
60 temperature
61 terrestrial solar spectrum
62 vapor
63 vapor phase epitaxy
64 schema:name In0.8Ga0.2As Quantum Dots for GaAs Solar Cells: Metal-Organic Vapor-Phase Epitaxy Growth Peculiarities and Properties
65 schema:pagination 870-876
66 schema:productId N142561422af04aae81488e36d0eb307d
67 Nd2d6d207b177498bb2f9d8d4f9dcea51
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104465366
69 https://doi.org/10.1134/s1063782618070199
70 schema:sdDatePublished 2022-05-20T07:33
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Ne4c17934abff4239a5f3ce6d70b2d025
73 schema:url https://doi.org/10.1134/s1063782618070199
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N142561422af04aae81488e36d0eb307d schema:name doi
78 schema:value 10.1134/s1063782618070199
79 rdf:type schema:PropertyValue
80 N1589dbf236d8429499b35b20aa2580d8 rdf:first sg:person.015150741574.00
81 rdf:rest Nfe0cc5b9ed6b42ddaf47a05b653300b9
82 N49093c8f3ba042b68d384c7a7ee03076 rdf:first sg:person.016373405407.44
83 rdf:rest N1589dbf236d8429499b35b20aa2580d8
84 N789bed12d5b6494badddcef8cb54cdcb rdf:first sg:person.014537453054.16
85 rdf:rest rdf:nil
86 N7c9c8180102647e8b93455d765babe26 schema:volumeNumber 52
87 rdf:type schema:PublicationVolume
88 Na387b0a964c141849dd20d3403763809 rdf:first sg:person.01114776037.19
89 rdf:rest Nf0ca03f90de14b05aa5bc2a4c1bc33f5
90 Nd2d6d207b177498bb2f9d8d4f9dcea51 schema:name dimensions_id
91 schema:value pub.1104465366
92 rdf:type schema:PropertyValue
93 Nde6a9e4af864407bb92cc8b1e4e7a1d6 schema:issueNumber 7
94 rdf:type schema:PublicationIssue
95 Ne4c17934abff4239a5f3ce6d70b2d025 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Nf0ca03f90de14b05aa5bc2a4c1bc33f5 rdf:first sg:person.016332220465.73
98 rdf:rest N789bed12d5b6494badddcef8cb54cdcb
99 Nfe0cc5b9ed6b42ddaf47a05b653300b9 rdf:first sg:person.07536566153.48
100 rdf:rest Na387b0a964c141849dd20d3403763809
101 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
102 schema:name Physical Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
105 schema:name Condensed Matter Physics
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
108 schema:name Quantum Physics
109 rdf:type schema:DefinedTerm
110 sg:journal.1136692 schema:issn 1063-7826
111 1090-6479
112 schema:name Semiconductors
113 schema:publisher Pleiades Publishing
114 rdf:type schema:Periodical
115 sg:person.01114776037.19 schema:affiliation grid-institutes:grid.4886.2
116 schema:familyName Nadtochiy
117 schema:givenName A. M.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114776037.19
119 rdf:type schema:Person
120 sg:person.014537453054.16 schema:affiliation grid-institutes:grid.423485.c
121 schema:familyName Kalyuzhnyy
122 schema:givenName N. A.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014537453054.16
124 rdf:type schema:Person
125 sg:person.015150741574.00 schema:affiliation grid-institutes:grid.4886.2
126 schema:familyName Kosarev
127 schema:givenName I. S.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015150741574.00
129 rdf:type schema:Person
130 sg:person.016332220465.73 schema:affiliation grid-institutes:grid.423485.c
131 schema:familyName Shvarts
132 schema:givenName M. Z.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016332220465.73
134 rdf:type schema:Person
135 sg:person.016373405407.44 schema:affiliation grid-institutes:grid.423485.c
136 schema:familyName Salii
137 schema:givenName R. A.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016373405407.44
139 rdf:type schema:Person
140 sg:person.07536566153.48 schema:affiliation grid-institutes:grid.423485.c
141 schema:familyName Mintairov
142 schema:givenName S. A.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07536566153.48
144 rdf:type schema:Person
145 sg:pub.10.1007/bf00901283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014330166
146 https://doi.org/10.1007/bf00901283
147 rdf:type schema:CreativeWork
148 sg:pub.10.1134/1.1766381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041911429
149 https://doi.org/10.1134/1.1766381
150 rdf:type schema:CreativeWork
151 sg:pub.10.1134/s1063782609040204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040830840
152 https://doi.org/10.1134/s1063782609040204
153 rdf:type schema:CreativeWork
154 sg:pub.10.1134/s1063782615080175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017288549
155 https://doi.org/10.1134/s1063782615080175
156 rdf:type schema:CreativeWork
157 grid-institutes:grid.423485.c schema:alternateName Ioffe Institute, 194021, St. Petersburg, Russia
158 schema:name Ioffe Institute, 194021, St. Petersburg, Russia
159 rdf:type schema:Organization
160 grid-institutes:grid.4886.2 schema:alternateName St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia
161 schema:name Ioffe Institute, 194021, St. Petersburg, Russia
162 St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021, St. Petersburg, Russia
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...