Mobility of the Two-Dimensional Electron Gas in DA-pHEMT Heterostructures with Various δ–n-Layer Profile Widths View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-01

AUTHORS

D. Yu. Protasov, A. K. Bakarov, A. I. Toropov, B. Ya. Ber, D. Yu. Kazantsev, K. S. Zhuravlev

ABSTRACT

The effect of the silicon-atom distribution profile in donor δ-layers of AlGaAs/InGaAs/AlGaAs heterostructures with donor–acceptor doping on the mobility of the two-dimensional electron gas is studied. The parameters of the δ-layer profiles are determined using the normal approximation of the spatial distributions of silicon atoms, measured by secondary-ion mass spectroscopy. It is shown that the standard deviation σ of the δ-layer profile can be reduced from 3.4 to 2.5 nm by the proper selection of growth conditions. Measurements of the magnetic-field dependences of the Hall effect and conductivity show that such a decrease in σ allowed an increase in the mobility of the two-dimensional electron gas in heterostructures by 4000 cm2/(V s) at 77 K and 600 cm2/(V s) at 300 K. The mobility calculation taking into account filling of the first two size-quantization subbands shows that an increase in the mobility is well explained by a reduction in the Coulomb scattering at ionized donors due to an increase in the effective thickness of the spacer layer with decreasing σ of the δ-layer profile. More... »

PAGES

44-52

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782618010189

DOI

http://dx.doi.org/10.1134/s1063782618010189

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101044253


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Novosibirsk State Technical University, 630073, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77667.37", 
          "name": [
            "Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
            "Novosibirsk State Technical University, 630073, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Protasov", 
        "givenName": "D. Yu.", 
        "id": "sg:person.014753002401.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014753002401.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
            "Novosibirsk State University, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bakarov", 
        "givenName": "A. K.", 
        "id": "sg:person.016035604507.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016035604507.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
            "Novosibirsk State University, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toropov", 
        "givenName": "A. I.", 
        "id": "sg:person.013540330162.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013540330162.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ber", 
        "givenName": "B. Ya.", 
        "id": "sg:person.013474671571.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013474671571.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kazantsev", 
        "givenName": "D. Yu.", 
        "id": "sg:person.014463273123.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014463273123.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
            "Novosibirsk State University, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhuravlev", 
        "givenName": "K. S.", 
        "id": "sg:person.013330106605.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013330106605.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1063782606120141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042419792", 
          "https://doi.org/10.1134/s1063782606120141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782614120227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017636586", 
          "https://doi.org/10.1134/s1063782614120227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1485669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015194501", 
          "https://doi.org/10.1134/1.1485669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063785012090088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022266657", 
          "https://doi.org/10.1134/s1063785012090088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782614050121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046958467", 
          "https://doi.org/10.1134/s1063782614050121"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-01", 
    "datePublishedReg": "2018-01-01", 
    "description": "The effect of the silicon-atom distribution profile in donor \u03b4-layers of AlGaAs/InGaAs/AlGaAs heterostructures with donor\u2013acceptor doping on the mobility of the two-dimensional electron gas is studied. The parameters of the \u03b4-layer profiles are determined using the normal approximation of the spatial distributions of silicon atoms, measured by secondary-ion mass spectroscopy. It is shown that the standard deviation \u03c3 of the \u03b4-layer profile can be reduced from 3.4 to 2.5 nm by the proper selection of growth conditions. Measurements of the magnetic-field dependences of the Hall effect and conductivity show that such a decrease in \u03c3 allowed an increase in the mobility of the two-dimensional electron gas in heterostructures by 4000 cm2/(V s) at 77 K and 600 cm2/(V s) at 300 K. The mobility calculation taking into account filling of the first two size-quantization subbands shows that an increase in the mobility is well explained by a reduction in the Coulomb scattering at ionized donors due to an increase in the effective thickness of the spacer layer with decreasing \u03c3 of the \u03b4-layer profile.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063782618010189", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "keywords": [
      "layer profiles", 
      "two-dimensional electron gas", 
      "secondary ion mass spectroscopy", 
      "donor\u2013acceptor doping", 
      "electron gas", 
      "magnetic field dependence", 
      "size-quantization subbands", 
      "effective thickness", 
      "spacer layer", 
      "heterostructures", 
      "normal approximation", 
      "AlGaAs heterostructures", 
      "proper selection", 
      "gas", 
      "Hall effect", 
      "standard deviation \u03c3", 
      "ionized donor", 
      "profile width", 
      "layer", 
      "mobility calculations", 
      "distribution profiles", 
      "deviation \u03c3", 
      "silicon atoms", 
      "mass spectroscopy", 
      "conductivity", 
      "spatial distribution", 
      "doping", 
      "thickness", 
      "mobility", 
      "growth conditions", 
      "approximation", 
      "Coulomb", 
      "subbands", 
      "atoms", 
      "width", 
      "parameters", 
      "spectroscopy", 
      "profile", 
      "measurements", 
      "increase", 
      "calculations", 
      "conditions", 
      "dependence", 
      "effect", 
      "distribution", 
      "reduction", 
      "account", 
      "decrease", 
      "selection", 
      "donors", 
      "DA"
    ], 
    "name": "Mobility of the Two-Dimensional Electron Gas in DA-pHEMT Heterostructures with Various \u03b4\u2013n-Layer Profile Widths", 
    "pagination": "44-52", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101044253"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782618010189"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782618010189", 
      "https://app.dimensions.ai/details/publication/pub.1101044253"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_755.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063782618010189"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782618010189'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782618010189'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782618010189'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782618010189'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      22 PREDICATES      83 URIs      69 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782618010189 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 anzsrc-for:0206
4 schema:author Neddd15682b844a91a965164b4a8cc94e
5 schema:citation sg:pub.10.1134/1.1485669
6 sg:pub.10.1134/s1063782606120141
7 sg:pub.10.1134/s1063782614050121
8 sg:pub.10.1134/s1063782614120227
9 sg:pub.10.1134/s1063785012090088
10 schema:datePublished 2018-01
11 schema:datePublishedReg 2018-01-01
12 schema:description The effect of the silicon-atom distribution profile in donor δ-layers of AlGaAs/InGaAs/AlGaAs heterostructures with donor–acceptor doping on the mobility of the two-dimensional electron gas is studied. The parameters of the δ-layer profiles are determined using the normal approximation of the spatial distributions of silicon atoms, measured by secondary-ion mass spectroscopy. It is shown that the standard deviation σ of the δ-layer profile can be reduced from 3.4 to 2.5 nm by the proper selection of growth conditions. Measurements of the magnetic-field dependences of the Hall effect and conductivity show that such a decrease in σ allowed an increase in the mobility of the two-dimensional electron gas in heterostructures by 4000 cm2/(V s) at 77 K and 600 cm2/(V s) at 300 K. The mobility calculation taking into account filling of the first two size-quantization subbands shows that an increase in the mobility is well explained by a reduction in the Coulomb scattering at ionized donors due to an increase in the effective thickness of the spacer layer with decreasing σ of the δ-layer profile.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N1fd0bbe14b03451e96da97f29638c214
17 N4e02631d807f44e2a937a502210c2c5d
18 sg:journal.1136692
19 schema:keywords AlGaAs heterostructures
20 Coulomb
21 DA
22 Hall effect
23 account
24 approximation
25 atoms
26 calculations
27 conditions
28 conductivity
29 decrease
30 dependence
31 deviation σ
32 distribution
33 distribution profiles
34 donors
35 donor–acceptor doping
36 doping
37 effect
38 effective thickness
39 electron gas
40 gas
41 growth conditions
42 heterostructures
43 increase
44 ionized donor
45 layer
46 layer profiles
47 magnetic field dependence
48 mass spectroscopy
49 measurements
50 mobility
51 mobility calculations
52 normal approximation
53 parameters
54 profile
55 profile width
56 proper selection
57 reduction
58 secondary ion mass spectroscopy
59 selection
60 silicon atoms
61 size-quantization subbands
62 spacer layer
63 spatial distribution
64 spectroscopy
65 standard deviation σ
66 subbands
67 thickness
68 two-dimensional electron gas
69 width
70 schema:name Mobility of the Two-Dimensional Electron Gas in DA-pHEMT Heterostructures with Various δ–n-Layer Profile Widths
71 schema:pagination 44-52
72 schema:productId N0784f7047d3445cea78c21f5fe667a5e
73 N5ad6deb471b042029eff485b550d24d5
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101044253
75 https://doi.org/10.1134/s1063782618010189
76 schema:sdDatePublished 2022-05-20T07:33
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N17eb7c783abe4bb7876319d16657e570
79 schema:url https://doi.org/10.1134/s1063782618010189
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N0784f7047d3445cea78c21f5fe667a5e schema:name doi
84 schema:value 10.1134/s1063782618010189
85 rdf:type schema:PropertyValue
86 N11872f449c154c089464999a8ad16e2c rdf:first sg:person.013474671571.59
87 rdf:rest N47621cf646754bdf8454341c928870da
88 N17eb7c783abe4bb7876319d16657e570 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N1fd0bbe14b03451e96da97f29638c214 schema:volumeNumber 52
91 rdf:type schema:PublicationVolume
92 N47621cf646754bdf8454341c928870da rdf:first sg:person.014463273123.71
93 rdf:rest Na2bebb57d69c446a9996497c530a13ce
94 N4e02631d807f44e2a937a502210c2c5d schema:issueNumber 1
95 rdf:type schema:PublicationIssue
96 N5ad6deb471b042029eff485b550d24d5 schema:name dimensions_id
97 schema:value pub.1101044253
98 rdf:type schema:PropertyValue
99 Na2bebb57d69c446a9996497c530a13ce rdf:first sg:person.013330106605.06
100 rdf:rest rdf:nil
101 Nb6fc0897736c40079130f6b3f96c2a31 rdf:first sg:person.016035604507.81
102 rdf:rest Ndd31f7242a634a9f96622e9c70a84598
103 Ndd31f7242a634a9f96622e9c70a84598 rdf:first sg:person.013540330162.90
104 rdf:rest N11872f449c154c089464999a8ad16e2c
105 Neddd15682b844a91a965164b4a8cc94e rdf:first sg:person.014753002401.53
106 rdf:rest Nb6fc0897736c40079130f6b3f96c2a31
107 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
108 schema:name Physical Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
111 schema:name Condensed Matter Physics
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
114 schema:name Quantum Physics
115 rdf:type schema:DefinedTerm
116 sg:journal.1136692 schema:issn 1063-7826
117 1090-6479
118 schema:name Semiconductors
119 schema:publisher Pleiades Publishing
120 rdf:type schema:Periodical
121 sg:person.013330106605.06 schema:affiliation grid-institutes:grid.4605.7
122 schema:familyName Zhuravlev
123 schema:givenName K. S.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013330106605.06
125 rdf:type schema:Person
126 sg:person.013474671571.59 schema:affiliation grid-institutes:grid.423485.c
127 schema:familyName Ber
128 schema:givenName B. Ya.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013474671571.59
130 rdf:type schema:Person
131 sg:person.013540330162.90 schema:affiliation grid-institutes:grid.4605.7
132 schema:familyName Toropov
133 schema:givenName A. I.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013540330162.90
135 rdf:type schema:Person
136 sg:person.014463273123.71 schema:affiliation grid-institutes:grid.423485.c
137 schema:familyName Kazantsev
138 schema:givenName D. Yu.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014463273123.71
140 rdf:type schema:Person
141 sg:person.014753002401.53 schema:affiliation grid-institutes:grid.77667.37
142 schema:familyName Protasov
143 schema:givenName D. Yu.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014753002401.53
145 rdf:type schema:Person
146 sg:person.016035604507.81 schema:affiliation grid-institutes:grid.4605.7
147 schema:familyName Bakarov
148 schema:givenName A. K.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016035604507.81
150 rdf:type schema:Person
151 sg:pub.10.1134/1.1485669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015194501
152 https://doi.org/10.1134/1.1485669
153 rdf:type schema:CreativeWork
154 sg:pub.10.1134/s1063782606120141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042419792
155 https://doi.org/10.1134/s1063782606120141
156 rdf:type schema:CreativeWork
157 sg:pub.10.1134/s1063782614050121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046958467
158 https://doi.org/10.1134/s1063782614050121
159 rdf:type schema:CreativeWork
160 sg:pub.10.1134/s1063782614120227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017636586
161 https://doi.org/10.1134/s1063782614120227
162 rdf:type schema:CreativeWork
163 sg:pub.10.1134/s1063785012090088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022266657
164 https://doi.org/10.1134/s1063785012090088
165 rdf:type schema:CreativeWork
166 grid-institutes:grid.423485.c schema:alternateName Ioffe Institute, 194021, St. Petersburg, Russia
167 schema:name Ioffe Institute, 194021, St. Petersburg, Russia
168 rdf:type schema:Organization
169 grid-institutes:grid.4605.7 schema:alternateName Novosibirsk State University, 630090, Novosibirsk, Russia
170 schema:name Novosibirsk State University, 630090, Novosibirsk, Russia
171 Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
172 rdf:type schema:Organization
173 grid-institutes:grid.77667.37 schema:alternateName Novosibirsk State Technical University, 630073, Novosibirsk, Russia
174 schema:name Novosibirsk State Technical University, 630073, Novosibirsk, Russia
175 Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...