Optical properties of hybrid quantum-well–dots nanostructures grown by MOCVD View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03-16

AUTHORS

S. A. Mintairov, N. A. Kalyuzhnyy, A. M. Nadtochiy, M. V. Maximov, S. S. Rouvimov, A. E. Zhukov

ABSTRACT

The deposition of InxGa1–xAs with an indium content of 0.3–0.5 and an average thickness of 3–27 single layers on a GaAs wafer by metalorganic chemical vapor deposition (MOCVD) at low temperatures results in the appearance of thickness and composition modulations in the layers being formed. Such structures can be considered to be intermediate nanostructures between ideal quantum wells and quantum dots. Depending on the average thickness and composition of the layers, the wavelength of the photoluminescence peak for the hybrid InGaAs quantum well–dots nanostructures varies from 950 to 1100 nm. The optimal average InxGa1–xAs thicknesses and compositions at which the emission wavelength is the longest with a high quantum efficiency retained are determined. More... »

PAGES

357-362

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782617030198

DOI

http://dx.doi.org/10.1134/s1063782617030198

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084223603


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "St. Petersburg Academic University, 194021, St. Petersburg, Russia", 
            "Solar Dots Ltd, 194021, St. Petersburg, Russia", 
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mintairov", 
        "givenName": "S. A.", 
        "id": "sg:person.07536566153.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07536566153.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peter the Great St. Petersburg Polytechnic University, 195251, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.32495.39", 
          "name": [
            "St. Petersburg Academic University, 194021, St. Petersburg, Russia", 
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
            "Peter the Great St. Petersburg Polytechnic University, 195251, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kalyuzhnyy", 
        "givenName": "N. A.", 
        "id": "sg:person.014537453054.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014537453054.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "St. Petersburg Academic University, 194021, St. Petersburg, Russia", 
            "Solar Dots Ltd, 194021, St. Petersburg, Russia", 
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nadtochiy", 
        "givenName": "A. M.", 
        "id": "sg:person.01114776037.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114776037.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peter the Great St. Petersburg Polytechnic University, 195251, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.32495.39", 
          "name": [
            "St. Petersburg Academic University, 194021, St. Petersburg, Russia", 
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
            "Peter the Great St. Petersburg Polytechnic University, 195251, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maximov", 
        "givenName": "M. V.", 
        "id": "sg:person.015106205514.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015106205514.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Notre Dame, 46556, Notre Dame, Indiana, USA", 
          "id": "http://www.grid.ac/institutes/grid.131063.6", 
          "name": [
            "University of Notre Dame, 46556, Notre Dame, Indiana, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rouvimov", 
        "givenName": "S. S.", 
        "id": "sg:person.01321212003.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321212003.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peter the Great St. Petersburg Polytechnic University, 195251, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.32495.39", 
          "name": [
            "St. Petersburg Academic University, 194021, St. Petersburg, Russia", 
            "Peter the Great St. Petersburg Polytechnic University, 195251, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhukov", 
        "givenName": "A. E.", 
        "id": "sg:person.011315427765.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011315427765.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1063782616090189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028001223", 
          "https://doi.org/10.1134/s1063782616090189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782612100223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001454055", 
          "https://doi.org/10.1134/s1063782612100223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s106378261508014x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001292207", 
          "https://doi.org/10.1134/s106378261508014x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-03-16", 
    "datePublishedReg": "2017-03-16", 
    "description": "The deposition of InxGa1\u2013xAs with an indium content of 0.3\u20130.5 and an average thickness of 3\u201327 single layers on a GaAs wafer by metalorganic chemical vapor deposition (MOCVD) at low temperatures results in the appearance of thickness and composition modulations in the layers being formed. Such structures can be considered to be intermediate nanostructures between ideal quantum wells and quantum dots. Depending on the average thickness and composition of the layers, the wavelength of the photoluminescence peak for the hybrid InGaAs quantum well\u2013dots nanostructures varies from 950 to 1100 nm. The optimal average InxGa1\u2013xAs thicknesses and compositions at which the emission wavelength is the longest with a high quantum efficiency retained are determined.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063782617030198", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "keywords": [
      "metalorganic chemical vapor deposition", 
      "high quantum efficiency", 
      "quantum wells", 
      "chemical vapor deposition", 
      "dot nanostructures", 
      "optical properties", 
      "quantum efficiency", 
      "photoluminescence peak", 
      "low temperature results", 
      "quantum dots", 
      "indium content", 
      "emission wavelength", 
      "InxGa1-xAs", 
      "GaAs wafers", 
      "vapor deposition", 
      "composition modulation", 
      "wavelength", 
      "intermediate nanostructures", 
      "single layer", 
      "dots", 
      "nanostructures", 
      "average thickness", 
      "such structures", 
      "temperature results", 
      "thickness", 
      "deposition", 
      "InGaAs", 
      "layer", 
      "wafers", 
      "wells", 
      "peak", 
      "properties", 
      "modulation", 
      "structure", 
      "composition", 
      "efficiency", 
      "appearance", 
      "results", 
      "content"
    ], 
    "name": "Optical properties of hybrid quantum-well\u2013dots nanostructures grown by MOCVD", 
    "pagination": "357-362", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084223603"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782617030198"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782617030198", 
      "https://app.dimensions.ai/details/publication/pub.1084223603"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_743.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063782617030198"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782617030198'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782617030198'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782617030198'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782617030198'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      22 PREDICATES      67 URIs      56 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782617030198 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author Nfc00d20f7ae14230bddb52a03f8f38a6
4 schema:citation sg:pub.10.1134/s1063782612100223
5 sg:pub.10.1134/s106378261508014x
6 sg:pub.10.1134/s1063782616090189
7 schema:datePublished 2017-03-16
8 schema:datePublishedReg 2017-03-16
9 schema:description The deposition of InxGa1–xAs with an indium content of 0.3–0.5 and an average thickness of 3–27 single layers on a GaAs wafer by metalorganic chemical vapor deposition (MOCVD) at low temperatures results in the appearance of thickness and composition modulations in the layers being formed. Such structures can be considered to be intermediate nanostructures between ideal quantum wells and quantum dots. Depending on the average thickness and composition of the layers, the wavelength of the photoluminescence peak for the hybrid InGaAs quantum well–dots nanostructures varies from 950 to 1100 nm. The optimal average InxGa1–xAs thicknesses and compositions at which the emission wavelength is the longest with a high quantum efficiency retained are determined.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf Na99f16bfe1de4e2caa78cf9397fa2db1
14 Nc266930f370445d7a03a27f3493e0555
15 sg:journal.1136692
16 schema:keywords GaAs wafers
17 InGaAs
18 InxGa1-xAs
19 appearance
20 average thickness
21 chemical vapor deposition
22 composition
23 composition modulation
24 content
25 deposition
26 dot nanostructures
27 dots
28 efficiency
29 emission wavelength
30 high quantum efficiency
31 indium content
32 intermediate nanostructures
33 layer
34 low temperature results
35 metalorganic chemical vapor deposition
36 modulation
37 nanostructures
38 optical properties
39 peak
40 photoluminescence peak
41 properties
42 quantum dots
43 quantum efficiency
44 quantum wells
45 results
46 single layer
47 structure
48 such structures
49 temperature results
50 thickness
51 vapor deposition
52 wafers
53 wavelength
54 wells
55 schema:name Optical properties of hybrid quantum-well–dots nanostructures grown by MOCVD
56 schema:pagination 357-362
57 schema:productId N81d94e9ac6d24e60ba46123ca744bfe8
58 Nf079ce14f78b4d84b49b673187039c0b
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084223603
60 https://doi.org/10.1134/s1063782617030198
61 schema:sdDatePublished 2022-05-10T10:17
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Nfe4c5e34f6ce43d19166f2c3c18c1f6e
64 schema:url https://doi.org/10.1134/s1063782617030198
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N0f251ca8107a45819b39c0fa4b6bd6aa rdf:first sg:person.01321212003.20
69 rdf:rest Nf517dce036334639b4a5739b5359baa0
70 N574f3abe56034bce91416184cbfe0c01 rdf:first sg:person.01114776037.19
71 rdf:rest N8cfc111d03a549149707bf2191068afb
72 N6bf9f2d2ede5479aa2a7b3c37e2cb66d rdf:first sg:person.014537453054.16
73 rdf:rest N574f3abe56034bce91416184cbfe0c01
74 N81d94e9ac6d24e60ba46123ca744bfe8 schema:name dimensions_id
75 schema:value pub.1084223603
76 rdf:type schema:PropertyValue
77 N8cfc111d03a549149707bf2191068afb rdf:first sg:person.015106205514.66
78 rdf:rest N0f251ca8107a45819b39c0fa4b6bd6aa
79 Na99f16bfe1de4e2caa78cf9397fa2db1 schema:issueNumber 3
80 rdf:type schema:PublicationIssue
81 Nc266930f370445d7a03a27f3493e0555 schema:volumeNumber 51
82 rdf:type schema:PublicationVolume
83 Nf079ce14f78b4d84b49b673187039c0b schema:name doi
84 schema:value 10.1134/s1063782617030198
85 rdf:type schema:PropertyValue
86 Nf517dce036334639b4a5739b5359baa0 rdf:first sg:person.011315427765.17
87 rdf:rest rdf:nil
88 Nfc00d20f7ae14230bddb52a03f8f38a6 rdf:first sg:person.07536566153.48
89 rdf:rest N6bf9f2d2ede5479aa2a7b3c37e2cb66d
90 Nfe4c5e34f6ce43d19166f2c3c18c1f6e schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
93 schema:name Physical Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
96 schema:name Quantum Physics
97 rdf:type schema:DefinedTerm
98 sg:journal.1136692 schema:issn 1063-7826
99 1090-6479
100 schema:name Semiconductors
101 schema:publisher Pleiades Publishing
102 rdf:type schema:Periodical
103 sg:person.01114776037.19 schema:affiliation grid-institutes:grid.423485.c
104 schema:familyName Nadtochiy
105 schema:givenName A. M.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114776037.19
107 rdf:type schema:Person
108 sg:person.011315427765.17 schema:affiliation grid-institutes:grid.32495.39
109 schema:familyName Zhukov
110 schema:givenName A. E.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011315427765.17
112 rdf:type schema:Person
113 sg:person.01321212003.20 schema:affiliation grid-institutes:grid.131063.6
114 schema:familyName Rouvimov
115 schema:givenName S. S.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321212003.20
117 rdf:type schema:Person
118 sg:person.014537453054.16 schema:affiliation grid-institutes:grid.32495.39
119 schema:familyName Kalyuzhnyy
120 schema:givenName N. A.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014537453054.16
122 rdf:type schema:Person
123 sg:person.015106205514.66 schema:affiliation grid-institutes:grid.32495.39
124 schema:familyName Maximov
125 schema:givenName M. V.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015106205514.66
127 rdf:type schema:Person
128 sg:person.07536566153.48 schema:affiliation grid-institutes:grid.423485.c
129 schema:familyName Mintairov
130 schema:givenName S. A.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07536566153.48
132 rdf:type schema:Person
133 sg:pub.10.1134/s1063782612100223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001454055
134 https://doi.org/10.1134/s1063782612100223
135 rdf:type schema:CreativeWork
136 sg:pub.10.1134/s106378261508014x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001292207
137 https://doi.org/10.1134/s106378261508014x
138 rdf:type schema:CreativeWork
139 sg:pub.10.1134/s1063782616090189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028001223
140 https://doi.org/10.1134/s1063782616090189
141 rdf:type schema:CreativeWork
142 grid-institutes:grid.131063.6 schema:alternateName University of Notre Dame, 46556, Notre Dame, Indiana, USA
143 schema:name University of Notre Dame, 46556, Notre Dame, Indiana, USA
144 rdf:type schema:Organization
145 grid-institutes:grid.32495.39 schema:alternateName Peter the Great St. Petersburg Polytechnic University, 195251, St. Petersburg, Russia
146 schema:name Ioffe Physical–Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
147 Peter the Great St. Petersburg Polytechnic University, 195251, St. Petersburg, Russia
148 St. Petersburg Academic University, 194021, St. Petersburg, Russia
149 rdf:type schema:Organization
150 grid-institutes:grid.423485.c schema:alternateName Ioffe Physical–Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
151 schema:name Ioffe Physical–Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
152 Solar Dots Ltd, 194021, St. Petersburg, Russia
153 St. Petersburg Academic University, 194021, St. Petersburg, Russia
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...