Optimization of structural and growth parameters of metamorphic InGaAs photovoltaic converters grown by MOCVD View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-01

AUTHORS

D. V. Rybalchenko, S. A. Mintairov, R. A. Salii, M. Z. Shvarts, N. Kh. Timoshina, N. A. Kalyuzhnyy

ABSTRACT

Metamorphic Ga0.76In0.24As heterostructures for photovoltaic converters are grown by the MOCVD (metal–organic chemical vapor deposition) technique. It is found that, due to the valence-band offset at the p-In0.24Al0.76As/p-In0.24Ga0.76As (wide-gap window/emitter) heterointerface, a potential barrier for holes arises as a result of a low carrier concentration in the wide-gap material. The use of an InAlGaAs solid solution with an Al content lower than 40% makes it possible to raise the hole concentration in the widegap window up ~9 × 1018 cm–3 and completely remove the potential barrier, thereby reducing the series resistance of the device. The parameters of an GaInAs metamorphic buffer layer with a stepwise In content profile are calculated and its epitaxial growth conditions are optimized, which improves carrier collection from the n-GaInAs base region and provides a quantum efficiency of 83% at a wavelength of 1064 nm. Optimization of the metamorphic heterostructure of the photovoltaic converter results in that its conversion efficiency for laser light with a wavelength of 1064 nm is 38.5%. More... »

PAGES

93-99

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782617010201

DOI

http://dx.doi.org/10.1134/s1063782617010201

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083750751


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rybalchenko", 
        "givenName": "D. V.", 
        "id": "sg:person.011560015501.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011560015501.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mintairov", 
        "givenName": "S. A.", 
        "id": "sg:person.07536566153.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07536566153.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salii", 
        "givenName": "R. A.", 
        "id": "sg:person.016373405407.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016373405407.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shvarts", 
        "givenName": "M. Z.", 
        "id": "sg:person.016332220465.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016332220465.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Timoshina", 
        "givenName": "N. Kh.", 
        "id": "sg:person.013705471175.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013705471175.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kalyuzhnyy", 
        "givenName": "N. A.", 
        "id": "sg:person.014537453054.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014537453054.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1063782615110068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032161674", 
          "https://doi.org/10.1134/s1063782615110068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1610131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012691552", 
          "https://doi.org/10.1134/1.1610131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782615050139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042051156", 
          "https://doi.org/10.1134/s1063782615050139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782616040163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035931292", 
          "https://doi.org/10.1134/s1063782616040163"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-01", 
    "datePublishedReg": "2017-01-01", 
    "description": "Metamorphic Ga0.76In0.24As heterostructures for photovoltaic converters are grown by the MOCVD (metal\u2013organic chemical vapor deposition) technique. It is found that, due to the valence-band offset at the p-In0.24Al0.76As/p-In0.24Ga0.76As (wide-gap window/emitter) heterointerface, a potential barrier for holes arises as a result of a low carrier concentration in the wide-gap material. The use of an InAlGaAs solid solution with an Al content lower than 40% makes it possible to raise the hole concentration in the widegap window up ~9 \u00d7 1018 cm\u20133 and completely remove the potential barrier, thereby reducing the series resistance of the device. The parameters of an GaInAs metamorphic buffer layer with a stepwise In content profile are calculated and its epitaxial growth conditions are optimized, which improves carrier collection from the n-GaInAs base region and provides a quantum efficiency of 83% at a wavelength of 1064 nm. Optimization of the metamorphic heterostructure of the photovoltaic converter results in that its conversion efficiency for laser light with a wavelength of 1064 nm is 38.5%.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063782617010201", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "keywords": [
      "photovoltaic converters", 
      "wide-gap materials", 
      "epitaxial growth conditions", 
      "potential barrier", 
      "valence band offset", 
      "low carrier concentration", 
      "metamorphic buffer layer", 
      "quantum efficiency", 
      "laser light", 
      "converter results", 
      "carrier collection", 
      "buffer layer", 
      "metamorphic heterostructures", 
      "series resistance", 
      "carrier concentration", 
      "MOCVD technique", 
      "conversion efficiency", 
      "hole concentration", 
      "content profiles", 
      "base region", 
      "solid solution", 
      "heterostructures", 
      "wavelength", 
      "converter", 
      "Al content", 
      "heterointerface", 
      "optimization", 
      "efficiency", 
      "holes", 
      "MOCVD", 
      "growth conditions", 
      "parameters", 
      "layer", 
      "devices", 
      "light", 
      "materials", 
      "offset", 
      "growth parameters", 
      "solution", 
      "window", 
      "results", 
      "resistance", 
      "barriers", 
      "technique", 
      "conditions", 
      "concentration", 
      "region", 
      "content", 
      "profile", 
      "use", 
      "stepwise", 
      "collection"
    ], 
    "name": "Optimization of structural and growth parameters of metamorphic InGaAs photovoltaic converters grown by MOCVD", 
    "pagination": "93-99", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083750751"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782617010201"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782617010201", 
      "https://app.dimensions.ai/details/publication/pub.1083750751"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_725.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063782617010201"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782617010201'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782617010201'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782617010201'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782617010201'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      22 PREDICATES      83 URIs      70 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782617010201 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 anzsrc-for:0206
4 schema:author N4bf12287eaa94fafb9ddc154482dcb78
5 schema:citation sg:pub.10.1134/1.1610131
6 sg:pub.10.1134/s1063782615050139
7 sg:pub.10.1134/s1063782615110068
8 sg:pub.10.1134/s1063782616040163
9 schema:datePublished 2017-01
10 schema:datePublishedReg 2017-01-01
11 schema:description Metamorphic Ga0.76In0.24As heterostructures for photovoltaic converters are grown by the MOCVD (metal–organic chemical vapor deposition) technique. It is found that, due to the valence-band offset at the p-In0.24Al0.76As/p-In0.24Ga0.76As (wide-gap window/emitter) heterointerface, a potential barrier for holes arises as a result of a low carrier concentration in the wide-gap material. The use of an InAlGaAs solid solution with an Al content lower than 40% makes it possible to raise the hole concentration in the widegap window up ~9 × 1018 cm–3 and completely remove the potential barrier, thereby reducing the series resistance of the device. The parameters of an GaInAs metamorphic buffer layer with a stepwise In content profile are calculated and its epitaxial growth conditions are optimized, which improves carrier collection from the n-GaInAs base region and provides a quantum efficiency of 83% at a wavelength of 1064 nm. Optimization of the metamorphic heterostructure of the photovoltaic converter results in that its conversion efficiency for laser light with a wavelength of 1064 nm is 38.5%.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N5459e8fdf8b54a098e96f67f9651f1de
16 Nc3297880fa2d4fb68b62fba5d02db859
17 sg:journal.1136692
18 schema:keywords Al content
19 MOCVD
20 MOCVD technique
21 barriers
22 base region
23 buffer layer
24 carrier collection
25 carrier concentration
26 collection
27 concentration
28 conditions
29 content
30 content profiles
31 conversion efficiency
32 converter
33 converter results
34 devices
35 efficiency
36 epitaxial growth conditions
37 growth conditions
38 growth parameters
39 heterointerface
40 heterostructures
41 hole concentration
42 holes
43 laser light
44 layer
45 light
46 low carrier concentration
47 materials
48 metamorphic buffer layer
49 metamorphic heterostructures
50 offset
51 optimization
52 parameters
53 photovoltaic converters
54 potential barrier
55 profile
56 quantum efficiency
57 region
58 resistance
59 results
60 series resistance
61 solid solution
62 solution
63 stepwise
64 technique
65 use
66 valence band offset
67 wavelength
68 wide-gap materials
69 window
70 schema:name Optimization of structural and growth parameters of metamorphic InGaAs photovoltaic converters grown by MOCVD
71 schema:pagination 93-99
72 schema:productId N5648d234b28d44f0ba4a653bd59795da
73 Nbf3f601d6905452cbccc7ccef3d132d9
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083750751
75 https://doi.org/10.1134/s1063782617010201
76 schema:sdDatePublished 2022-05-20T07:32
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher Ndb4553e382354546b7094ac2ba66cdf3
79 schema:url https://doi.org/10.1134/s1063782617010201
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N09c40109c7c94eeba3c0add01bb8d024 rdf:first sg:person.014537453054.16
84 rdf:rest rdf:nil
85 N2f7d3b7e285947c8a12ea8764940c507 rdf:first sg:person.013705471175.43
86 rdf:rest N09c40109c7c94eeba3c0add01bb8d024
87 N4bf12287eaa94fafb9ddc154482dcb78 rdf:first sg:person.011560015501.27
88 rdf:rest Nd869938743984d8f8a4387578be48657
89 N5459e8fdf8b54a098e96f67f9651f1de schema:issueNumber 1
90 rdf:type schema:PublicationIssue
91 N5648d234b28d44f0ba4a653bd59795da schema:name doi
92 schema:value 10.1134/s1063782617010201
93 rdf:type schema:PropertyValue
94 Nb5c9d9bb8f8f4c7faf5230ce950257b1 rdf:first sg:person.016332220465.73
95 rdf:rest N2f7d3b7e285947c8a12ea8764940c507
96 Nbf3f601d6905452cbccc7ccef3d132d9 schema:name dimensions_id
97 schema:value pub.1083750751
98 rdf:type schema:PropertyValue
99 Nc3297880fa2d4fb68b62fba5d02db859 schema:volumeNumber 51
100 rdf:type schema:PublicationVolume
101 Nc9f954e9ab3d4a96afa9d5d651584291 rdf:first sg:person.016373405407.44
102 rdf:rest Nb5c9d9bb8f8f4c7faf5230ce950257b1
103 Nd869938743984d8f8a4387578be48657 rdf:first sg:person.07536566153.48
104 rdf:rest Nc9f954e9ab3d4a96afa9d5d651584291
105 Ndb4553e382354546b7094ac2ba66cdf3 schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
108 schema:name Physical Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
111 schema:name Condensed Matter Physics
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
114 schema:name Quantum Physics
115 rdf:type schema:DefinedTerm
116 sg:journal.1136692 schema:issn 1063-7826
117 1090-6479
118 schema:name Semiconductors
119 schema:publisher Pleiades Publishing
120 rdf:type schema:Periodical
121 sg:person.011560015501.27 schema:affiliation grid-institutes:grid.423485.c
122 schema:familyName Rybalchenko
123 schema:givenName D. V.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011560015501.27
125 rdf:type schema:Person
126 sg:person.013705471175.43 schema:affiliation grid-institutes:grid.423485.c
127 schema:familyName Timoshina
128 schema:givenName N. Kh.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013705471175.43
130 rdf:type schema:Person
131 sg:person.014537453054.16 schema:affiliation grid-institutes:grid.423485.c
132 schema:familyName Kalyuzhnyy
133 schema:givenName N. A.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014537453054.16
135 rdf:type schema:Person
136 sg:person.016332220465.73 schema:affiliation grid-institutes:grid.423485.c
137 schema:familyName Shvarts
138 schema:givenName M. Z.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016332220465.73
140 rdf:type schema:Person
141 sg:person.016373405407.44 schema:affiliation grid-institutes:grid.423485.c
142 schema:familyName Salii
143 schema:givenName R. A.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016373405407.44
145 rdf:type schema:Person
146 sg:person.07536566153.48 schema:affiliation grid-institutes:grid.423485.c
147 schema:familyName Mintairov
148 schema:givenName S. A.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07536566153.48
150 rdf:type schema:Person
151 sg:pub.10.1134/1.1610131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012691552
152 https://doi.org/10.1134/1.1610131
153 rdf:type schema:CreativeWork
154 sg:pub.10.1134/s1063782615050139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042051156
155 https://doi.org/10.1134/s1063782615050139
156 rdf:type schema:CreativeWork
157 sg:pub.10.1134/s1063782615110068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032161674
158 https://doi.org/10.1134/s1063782615110068
159 rdf:type schema:CreativeWork
160 sg:pub.10.1134/s1063782616040163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035931292
161 https://doi.org/10.1134/s1063782616040163
162 rdf:type schema:CreativeWork
163 grid-institutes:grid.423485.c schema:alternateName Ioffe Physical–Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
164 schema:name Ioffe Physical–Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...