Bragg resonance in a system of AsSb plasmonic nanoinclusions in AlGaAs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-12

AUTHORS

V. I. Ushanov, V. V. Chaldyshev, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin

ABSTRACT

The optical reflection from periodic structures based on a semiconductor AlGaAs matrix containing 2D arrays of plasmonic AsSb nanoinclusions is studied. The number of nanoinclusion layers is 12 or 24, and the nominal spatial periods are 100 or 110 nm, respectively. In the experimental spectra of the optical reflection coefficient at normal incidence, we observe resonant Bragg diffraction with the main peaks at wavelengths of 757 or 775 nm (1.64 or 1.60 eV), depending on the spatial period of the nanostructure. The magnitudes of the resonance peaks reach 22 and 31% for the systems of 12 and 24 AsSb–AlGaAs layers, while the volume fraction of the nanoinclusions is much less than 1%. In the case of light incident at inclined angles, the Bragg-diffraction pattern shifts according to Wulff–Bragg’s law. Numerical simulation of the optical reflection spectra is performed using the transfer-matrix method by taking into account the spatial geometry of the structures and the resonance characteristics of the plasmonic AsSb layers. More... »

PAGES

1595-1599

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782616120253

DOI

http://dx.doi.org/10.1134/s1063782616120253

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053862721


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ushanov", 
        "givenName": "V. I.", 
        "id": "sg:person.010704414445.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010704414445.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chaldyshev", 
        "givenName": "V. V.", 
        "id": "sg:person.010716755351.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010716755351.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Semiconductor Physics", 
          "id": "https://www.grid.ac/institutes/grid.450314.7", 
          "name": [
            "Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Preobrazhenskii", 
        "givenName": "V. V.", 
        "id": "sg:person.010664106542.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010664106542.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Semiconductor Physics", 
          "id": "https://www.grid.ac/institutes/grid.450314.7", 
          "name": [
            "Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Putyato", 
        "givenName": "M. A.", 
        "id": "sg:person.015271274417.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015271274417.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Semiconductor Physics", 
          "id": "https://www.grid.ac/institutes/grid.450314.7", 
          "name": [
            "Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Semyagin", 
        "givenName": "B. R.", 
        "id": "sg:person.011644303155.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644303155.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1063782613080198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017057812", 
          "https://doi.org/10.1134/s1063782613080198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5107(01)00904-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021255487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782612100089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025263844", 
          "https://doi.org/10.1134/s1063782612100089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s106378341410031x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050280192", 
          "https://doi.org/10.1134/s106378341410031x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782615120234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051570058", 
          "https://doi.org/10.1134/s1063782615120234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2012.244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052204297", 
          "https://doi.org/10.1038/nphoton.2012.244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.123625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057687773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.336070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057941564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.352326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057967388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.370284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058004566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9783527618156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109492064"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "The optical reflection from periodic structures based on a semiconductor AlGaAs matrix containing 2D arrays of plasmonic AsSb nanoinclusions is studied. The number of nanoinclusion layers is 12 or 24, and the nominal spatial periods are 100 or 110 nm, respectively. In the experimental spectra of the optical reflection coefficient at normal incidence, we observe resonant Bragg diffraction with the main peaks at wavelengths of 757 or 775 nm (1.64 or 1.60 eV), depending on the spatial period of the nanostructure. The magnitudes of the resonance peaks reach 22 and 31% for the systems of 12 and 24 AsSb\u2013AlGaAs layers, while the volume fraction of the nanoinclusions is much less than 1%. In the case of light incident at inclined angles, the Bragg-diffraction pattern shifts according to Wulff\u2013Bragg\u2019s law. Numerical simulation of the optical reflection spectra is performed using the transfer-matrix method by taking into account the spatial geometry of the structures and the resonance characteristics of the plasmonic AsSb layers.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063782616120253", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "50"
      }
    ], 
    "name": "Bragg resonance in a system of AsSb plasmonic nanoinclusions in AlGaAs", 
    "pagination": "1595-1599", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "566e0e8b575837e5f2b3e6521a85a5217d0611ae7c90cdcadc8082a3d9d6239b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782616120253"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053862721"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782616120253", 
      "https://app.dimensions.ai/details/publication/pub.1053862721"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88239_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS1063782616120253"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782616120253'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782616120253'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782616120253'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782616120253'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782616120253 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author Ne707f745e10a479aa1edcafecee3f284
4 schema:citation sg:pub.10.1038/nphoton.2012.244
5 sg:pub.10.1134/s1063782612100089
6 sg:pub.10.1134/s1063782613080198
7 sg:pub.10.1134/s1063782615120234
8 sg:pub.10.1134/s106378341410031x
9 https://doi.org/10.1002/9783527618156
10 https://doi.org/10.1016/s0921-5107(01)00904-7
11 https://doi.org/10.1063/1.123625
12 https://doi.org/10.1063/1.336070
13 https://doi.org/10.1063/1.352326
14 https://doi.org/10.1063/1.370284
15 schema:datePublished 2016-12
16 schema:datePublishedReg 2016-12-01
17 schema:description The optical reflection from periodic structures based on a semiconductor AlGaAs matrix containing 2D arrays of plasmonic AsSb nanoinclusions is studied. The number of nanoinclusion layers is 12 or 24, and the nominal spatial periods are 100 or 110 nm, respectively. In the experimental spectra of the optical reflection coefficient at normal incidence, we observe resonant Bragg diffraction with the main peaks at wavelengths of 757 or 775 nm (1.64 or 1.60 eV), depending on the spatial period of the nanostructure. The magnitudes of the resonance peaks reach 22 and 31% for the systems of 12 and 24 AsSb–AlGaAs layers, while the volume fraction of the nanoinclusions is much less than 1%. In the case of light incident at inclined angles, the Bragg-diffraction pattern shifts according to Wulff–Bragg’s law. Numerical simulation of the optical reflection spectra is performed using the transfer-matrix method by taking into account the spatial geometry of the structures and the resonance characteristics of the plasmonic AsSb layers.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N278b5d18fb4d4fed9262f1de9650bdc9
22 Nd2c5d4fd88504d9a90740a2fa7c5473f
23 sg:journal.1136692
24 schema:name Bragg resonance in a system of AsSb plasmonic nanoinclusions in AlGaAs
25 schema:pagination 1595-1599
26 schema:productId N0bfbb674560d46ceb4a3568595dc73cf
27 N2ff1a80151b546e69c32638909337643
28 Na7bc8c4b41d94c3994adea410bd82b04
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053862721
30 https://doi.org/10.1134/s1063782616120253
31 schema:sdDatePublished 2019-04-11T13:09
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N32e852e8df18402688a6a170c7133ccf
34 schema:url https://link.springer.com/10.1134%2FS1063782616120253
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N05829bf1582e4d3e879fce8e4b4d0dfa rdf:first sg:person.010716755351.29
39 rdf:rest N99f526f219484d029c816504885f5436
40 N0bfbb674560d46ceb4a3568595dc73cf schema:name dimensions_id
41 schema:value pub.1053862721
42 rdf:type schema:PropertyValue
43 N156182048ca844b8bd552ded7750f15a rdf:first sg:person.015271274417.07
44 rdf:rest Nbca98369985947f488a99ada24172396
45 N278b5d18fb4d4fed9262f1de9650bdc9 schema:issueNumber 12
46 rdf:type schema:PublicationIssue
47 N2ff1a80151b546e69c32638909337643 schema:name readcube_id
48 schema:value 566e0e8b575837e5f2b3e6521a85a5217d0611ae7c90cdcadc8082a3d9d6239b
49 rdf:type schema:PropertyValue
50 N32e852e8df18402688a6a170c7133ccf schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N99f526f219484d029c816504885f5436 rdf:first sg:person.010664106542.73
53 rdf:rest N156182048ca844b8bd552ded7750f15a
54 Na7bc8c4b41d94c3994adea410bd82b04 schema:name doi
55 schema:value 10.1134/s1063782616120253
56 rdf:type schema:PropertyValue
57 Nbca98369985947f488a99ada24172396 rdf:first sg:person.011644303155.87
58 rdf:rest rdf:nil
59 Nd2c5d4fd88504d9a90740a2fa7c5473f schema:volumeNumber 50
60 rdf:type schema:PublicationVolume
61 Ne707f745e10a479aa1edcafecee3f284 rdf:first sg:person.010704414445.62
62 rdf:rest N05829bf1582e4d3e879fce8e4b4d0dfa
63 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
64 schema:name Physical Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
67 schema:name Optical Physics
68 rdf:type schema:DefinedTerm
69 sg:journal.1136692 schema:issn 1063-7826
70 1090-6479
71 schema:name Semiconductors
72 rdf:type schema:Periodical
73 sg:person.010664106542.73 schema:affiliation https://www.grid.ac/institutes/grid.450314.7
74 schema:familyName Preobrazhenskii
75 schema:givenName V. V.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010664106542.73
77 rdf:type schema:Person
78 sg:person.010704414445.62 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
79 schema:familyName Ushanov
80 schema:givenName V. I.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010704414445.62
82 rdf:type schema:Person
83 sg:person.010716755351.29 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
84 schema:familyName Chaldyshev
85 schema:givenName V. V.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010716755351.29
87 rdf:type schema:Person
88 sg:person.011644303155.87 schema:affiliation https://www.grid.ac/institutes/grid.450314.7
89 schema:familyName Semyagin
90 schema:givenName B. R.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644303155.87
92 rdf:type schema:Person
93 sg:person.015271274417.07 schema:affiliation https://www.grid.ac/institutes/grid.450314.7
94 schema:familyName Putyato
95 schema:givenName M. A.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015271274417.07
97 rdf:type schema:Person
98 sg:pub.10.1038/nphoton.2012.244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052204297
99 https://doi.org/10.1038/nphoton.2012.244
100 rdf:type schema:CreativeWork
101 sg:pub.10.1134/s1063782612100089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025263844
102 https://doi.org/10.1134/s1063782612100089
103 rdf:type schema:CreativeWork
104 sg:pub.10.1134/s1063782613080198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017057812
105 https://doi.org/10.1134/s1063782613080198
106 rdf:type schema:CreativeWork
107 sg:pub.10.1134/s1063782615120234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051570058
108 https://doi.org/10.1134/s1063782615120234
109 rdf:type schema:CreativeWork
110 sg:pub.10.1134/s106378341410031x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050280192
111 https://doi.org/10.1134/s106378341410031x
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1002/9783527618156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109492064
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/s0921-5107(01)00904-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021255487
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1063/1.123625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057687773
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1063/1.336070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057941564
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1063/1.352326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057967388
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1063/1.370284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058004566
124 rdf:type schema:CreativeWork
125 https://www.grid.ac/institutes/grid.423485.c schema:alternateName Ioffe Institute
126 schema:name Ioffe Physical–Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
127 rdf:type schema:Organization
128 https://www.grid.ac/institutes/grid.450314.7 schema:alternateName Institute of Semiconductor Physics
129 schema:name Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...