Polarization characteristics of 850-nm vertical-cavity surface-emitting lasers with intracavity contacts and a rhomboidal oxide current aperture View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-10-11

AUTHORS

M. A. Bobrov, N. A. Maleev, S. A. Blokhin, A. G. Kuzmenkov, A. P. Vasil’ev, A. A. Blokhin, Yu. A. Guseva, M. M. Kulagina, Yu. M. Zadiranov, S. I. Troshkov, V. Lysak, V. M. Ustinov

ABSTRACT

The polarization characteristics of 850-nm vertical-cavity surface-emitting lasers (VCSELs) with intracavity contacts and a rhomboidal oxide current aperture are studied. It is found that radiation polarization is always directed along the minor diagonal of the rhomboidal aperture (along the [1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline 1 $$\end{document} 10] direction) for all single-mode VCSELs. The numerical simulation of carrier transport does not reveal the significant anisotropy of carrier injection to the active region. Furthermore, an analysis of the spatial distribution of the fundamental mode for two orthogonal polarizations within an effective waveguide model shows close transverse optical-confinement factors. Optical loss anisotropy in the asymmetric microcavity and/or gain anisotropy in the strained active region are the most likely mechanisms responsible for fixing the polarization. More... »

PAGES

1390-1395

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782616100092

DOI

http://dx.doi.org/10.1134/s1063782616100092

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023586935


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bobrov", 
        "givenName": "M. A.", 
        "id": "sg:person.016652543020.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016652543020.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maleev", 
        "givenName": "N. A.", 
        "id": "sg:person.011317077151.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011317077151.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blokhin", 
        "givenName": "S. A.", 
        "id": "sg:person.015244136173.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015244136173.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Submicron Heterostructures for Microelectronics Research and Engineering Center, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.502986.0", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia", 
            "Submicron Heterostructures for Microelectronics Research and Engineering Center, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuzmenkov", 
        "givenName": "A. G.", 
        "id": "sg:person.013204674115.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013204674115.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Submicron Heterostructures for Microelectronics Research and Engineering Center, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.502986.0", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia", 
            "Submicron Heterostructures for Microelectronics Research and Engineering Center, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasil\u2019ev", 
        "givenName": "A. P.", 
        "id": "sg:person.014334030356.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014334030356.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blokhin", 
        "givenName": "A. A.", 
        "id": "sg:person.07355752320.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07355752320.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guseva", 
        "givenName": "Yu. A.", 
        "id": "sg:person.010014017535.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010014017535.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kulagina", 
        "givenName": "M. M.", 
        "id": "sg:person.07410421673.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07410421673.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zadiranov", 
        "givenName": "Yu. M.", 
        "id": "sg:person.014121041567.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121041567.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Troshkov", 
        "givenName": "S. I.", 
        "id": "sg:person.01126063542.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126063542.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research University of Information Technologies, Mechanics and Optics, pr. Kronverkskii 49, 197101, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.35915.3b", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia", 
            "National Research University of Information Technologies, Mechanics and Optics, pr. Kronverkskii 49, 197101, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lysak", 
        "givenName": "V.", 
        "id": "sg:person.010336337623.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010336337623.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Submicron Heterostructures for Microelectronics Research and Engineering Center, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.502986.0", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia", 
            "Submicron Heterostructures for Microelectronics Research and Engineering Center, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ustinov", 
        "givenName": "V. M.", 
        "id": "sg:person.012211352412.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012211352412.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1063782613070166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044532107", 
          "https://doi.org/10.1134/s1063782613070166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-24986-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038785038", 
          "https://doi.org/10.1007/978-3-642-24986-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2006.80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020059693", 
          "https://doi.org/10.1038/nphoton.2006.80"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-10-11", 
    "datePublishedReg": "2016-10-11", 
    "description": "The polarization characteristics of 850-nm vertical-cavity surface-emitting lasers (VCSELs) with intracavity contacts and a rhomboidal oxide current aperture are studied. It is found that radiation polarization is always directed along the minor diagonal of the rhomboidal aperture (along the [1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\overline 1 $$\\end{document} 10] direction) for all single-mode VCSELs. The numerical simulation of carrier transport does not reveal the significant anisotropy of carrier injection to the active region. Furthermore, an analysis of the spatial distribution of the fundamental mode for two orthogonal polarizations within an effective waveguide model shows close transverse optical-confinement factors. Optical loss anisotropy in the asymmetric microcavity and/or gain anisotropy in the strained active region are the most likely mechanisms responsible for fixing the polarization.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063782616100092", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "50"
      }
    ], 
    "keywords": [
      "vertical-cavity surface-emitting lasers", 
      "surface-emitting lasers", 
      "intracavity contacts", 
      "current aperture", 
      "carrier injection", 
      "single-mode vertical-cavity surface-emitting lasers", 
      "carrier transport", 
      "numerical simulations", 
      "active region", 
      "polarization characteristics", 
      "waveguide model", 
      "significant anisotropy", 
      "fundamental mode", 
      "loss anisotropy", 
      "spatial distribution", 
      "orthogonal polarizations", 
      "aperture", 
      "anisotropy", 
      "laser", 
      "polarization", 
      "contact", 
      "simulations", 
      "characteristics", 
      "radiation polarization", 
      "microcavities", 
      "asymmetric microcavity", 
      "transport", 
      "mode", 
      "distribution", 
      "model", 
      "region", 
      "diagonals", 
      "analysis", 
      "mechanism", 
      "injection", 
      "minor diagonal", 
      "likely mechanism", 
      "factors", 
      "rhomboidal oxide current aperture", 
      "oxide current aperture", 
      "rhomboidal aperture", 
      "effective waveguide model", 
      "close transverse optical-confinement factors", 
      "transverse optical-confinement factors", 
      "optical-confinement factors", 
      "Optical loss anisotropy", 
      "strained active region"
    ], 
    "name": "Polarization characteristics of 850-nm vertical-cavity surface-emitting lasers with intracavity contacts and a rhomboidal oxide current aperture", 
    "pagination": "1390-1395", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023586935"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782616100092"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782616100092", 
      "https://app.dimensions.ai/details/publication/pub.1023586935"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_684.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063782616100092"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782616100092'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782616100092'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782616100092'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782616100092'


 

This table displays all metadata directly associated to this object as RDF triples.

202 TRIPLES      22 PREDICATES      75 URIs      64 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782616100092 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author N00b14a10da62439fa73a11e8b33069c8
4 schema:citation sg:pub.10.1007/978-3-642-24986-0
5 sg:pub.10.1038/nphoton.2006.80
6 sg:pub.10.1134/s1063782613070166
7 schema:datePublished 2016-10-11
8 schema:datePublishedReg 2016-10-11
9 schema:description The polarization characteristics of 850-nm vertical-cavity surface-emitting lasers (VCSELs) with intracavity contacts and a rhomboidal oxide current aperture are studied. It is found that radiation polarization is always directed along the minor diagonal of the rhomboidal aperture (along the [1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline 1 $$\end{document} 10] direction) for all single-mode VCSELs. The numerical simulation of carrier transport does not reveal the significant anisotropy of carrier injection to the active region. Furthermore, an analysis of the spatial distribution of the fundamental mode for two orthogonal polarizations within an effective waveguide model shows close transverse optical-confinement factors. Optical loss anisotropy in the asymmetric microcavity and/or gain anisotropy in the strained active region are the most likely mechanisms responsible for fixing the polarization.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N750731f5d7e945ff91a87b9072ed64f8
14 Na0441f1ccf8148fe82e4467be91eee66
15 sg:journal.1136692
16 schema:keywords Optical loss anisotropy
17 active region
18 analysis
19 anisotropy
20 aperture
21 asymmetric microcavity
22 carrier injection
23 carrier transport
24 characteristics
25 close transverse optical-confinement factors
26 contact
27 current aperture
28 diagonals
29 distribution
30 effective waveguide model
31 factors
32 fundamental mode
33 injection
34 intracavity contacts
35 laser
36 likely mechanism
37 loss anisotropy
38 mechanism
39 microcavities
40 minor diagonal
41 mode
42 model
43 numerical simulations
44 optical-confinement factors
45 orthogonal polarizations
46 oxide current aperture
47 polarization
48 polarization characteristics
49 radiation polarization
50 region
51 rhomboidal aperture
52 rhomboidal oxide current aperture
53 significant anisotropy
54 simulations
55 single-mode vertical-cavity surface-emitting lasers
56 spatial distribution
57 strained active region
58 surface-emitting lasers
59 transport
60 transverse optical-confinement factors
61 vertical-cavity surface-emitting lasers
62 waveguide model
63 schema:name Polarization characteristics of 850-nm vertical-cavity surface-emitting lasers with intracavity contacts and a rhomboidal oxide current aperture
64 schema:pagination 1390-1395
65 schema:productId N1803f92bc459407fa9c28519052ac87b
66 N6523d7546614446e8857adcfc28d1c03
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023586935
68 https://doi.org/10.1134/s1063782616100092
69 schema:sdDatePublished 2021-11-01T18:25
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher Nbd5bc85bd8c440db89642eab8d5c0a79
72 schema:url https://doi.org/10.1134/s1063782616100092
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N00b14a10da62439fa73a11e8b33069c8 rdf:first sg:person.016652543020.09
77 rdf:rest Nd2bac28c6b7549a7b42ee45627dcd0eb
78 N1803f92bc459407fa9c28519052ac87b schema:name dimensions_id
79 schema:value pub.1023586935
80 rdf:type schema:PropertyValue
81 N2fdab5d85f07463881c94ca03a2847f4 rdf:first sg:person.01126063542.10
82 rdf:rest Nfbda360c46544d15a3a7d52e258c96e2
83 N4becc7db3b964c27b56f67ce32ec4a28 rdf:first sg:person.07410421673.58
84 rdf:rest N4cc23a0b268a4edaafec8dbcf15dea98
85 N4cc23a0b268a4edaafec8dbcf15dea98 rdf:first sg:person.014121041567.87
86 rdf:rest N2fdab5d85f07463881c94ca03a2847f4
87 N6486a75ea5fd4775a72b4e2f42bedba7 rdf:first sg:person.012211352412.34
88 rdf:rest rdf:nil
89 N6523d7546614446e8857adcfc28d1c03 schema:name doi
90 schema:value 10.1134/s1063782616100092
91 rdf:type schema:PropertyValue
92 N6b7f3758801c476a9afe16180a63a965 rdf:first sg:person.07355752320.43
93 rdf:rest Nad675422cb5f43079256c22ad2cae1a7
94 N750731f5d7e945ff91a87b9072ed64f8 schema:volumeNumber 50
95 rdf:type schema:PublicationVolume
96 N9a13bf9af90e45aab82d43e68e802b1e rdf:first sg:person.014334030356.12
97 rdf:rest N6b7f3758801c476a9afe16180a63a965
98 N9a63d1d48ba14f25a99a274d37b0e284 rdf:first sg:person.015244136173.28
99 rdf:rest Ne5f2ffee5325435c98b55c85fc3d3d92
100 Na0441f1ccf8148fe82e4467be91eee66 schema:issueNumber 10
101 rdf:type schema:PublicationIssue
102 Nad675422cb5f43079256c22ad2cae1a7 rdf:first sg:person.010014017535.87
103 rdf:rest N4becc7db3b964c27b56f67ce32ec4a28
104 Nbd5bc85bd8c440db89642eab8d5c0a79 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 Nd2bac28c6b7549a7b42ee45627dcd0eb rdf:first sg:person.011317077151.34
107 rdf:rest N9a63d1d48ba14f25a99a274d37b0e284
108 Ne5f2ffee5325435c98b55c85fc3d3d92 rdf:first sg:person.013204674115.84
109 rdf:rest N9a13bf9af90e45aab82d43e68e802b1e
110 Nfbda360c46544d15a3a7d52e258c96e2 rdf:first sg:person.010336337623.65
111 rdf:rest N6486a75ea5fd4775a72b4e2f42bedba7
112 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
113 schema:name Physical Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
116 schema:name Optical Physics
117 rdf:type schema:DefinedTerm
118 sg:journal.1136692 schema:issn 1063-7826
119 1090-6479
120 schema:name Semiconductors
121 schema:publisher Pleiades Publishing
122 rdf:type schema:Periodical
123 sg:person.010014017535.87 schema:affiliation grid-institutes:grid.423485.c
124 schema:familyName Guseva
125 schema:givenName Yu. A.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010014017535.87
127 rdf:type schema:Person
128 sg:person.010336337623.65 schema:affiliation grid-institutes:grid.35915.3b
129 schema:familyName Lysak
130 schema:givenName V.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010336337623.65
132 rdf:type schema:Person
133 sg:person.01126063542.10 schema:affiliation grid-institutes:grid.423485.c
134 schema:familyName Troshkov
135 schema:givenName S. I.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126063542.10
137 rdf:type schema:Person
138 sg:person.011317077151.34 schema:affiliation grid-institutes:grid.423485.c
139 schema:familyName Maleev
140 schema:givenName N. A.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011317077151.34
142 rdf:type schema:Person
143 sg:person.012211352412.34 schema:affiliation grid-institutes:grid.502986.0
144 schema:familyName Ustinov
145 schema:givenName V. M.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012211352412.34
147 rdf:type schema:Person
148 sg:person.013204674115.84 schema:affiliation grid-institutes:grid.502986.0
149 schema:familyName Kuzmenkov
150 schema:givenName A. G.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013204674115.84
152 rdf:type schema:Person
153 sg:person.014121041567.87 schema:affiliation grid-institutes:grid.423485.c
154 schema:familyName Zadiranov
155 schema:givenName Yu. M.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121041567.87
157 rdf:type schema:Person
158 sg:person.014334030356.12 schema:affiliation grid-institutes:grid.502986.0
159 schema:familyName Vasil’ev
160 schema:givenName A. P.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014334030356.12
162 rdf:type schema:Person
163 sg:person.015244136173.28 schema:affiliation grid-institutes:grid.423485.c
164 schema:familyName Blokhin
165 schema:givenName S. A.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015244136173.28
167 rdf:type schema:Person
168 sg:person.016652543020.09 schema:affiliation grid-institutes:grid.423485.c
169 schema:familyName Bobrov
170 schema:givenName M. A.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016652543020.09
172 rdf:type schema:Person
173 sg:person.07355752320.43 schema:affiliation grid-institutes:grid.423485.c
174 schema:familyName Blokhin
175 schema:givenName A. A.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07355752320.43
177 rdf:type schema:Person
178 sg:person.07410421673.58 schema:affiliation grid-institutes:grid.423485.c
179 schema:familyName Kulagina
180 schema:givenName M. M.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07410421673.58
182 rdf:type schema:Person
183 sg:pub.10.1007/978-3-642-24986-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038785038
184 https://doi.org/10.1007/978-3-642-24986-0
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nphoton.2006.80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020059693
187 https://doi.org/10.1038/nphoton.2006.80
188 rdf:type schema:CreativeWork
189 sg:pub.10.1134/s1063782613070166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044532107
190 https://doi.org/10.1134/s1063782613070166
191 rdf:type schema:CreativeWork
192 grid-institutes:grid.35915.3b schema:alternateName National Research University of Information Technologies, Mechanics and Optics, pr. Kronverkskii 49, 197101, St. Petersburg, Russia
193 schema:name Ioffe Physical–Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia
194 National Research University of Information Technologies, Mechanics and Optics, pr. Kronverkskii 49, 197101, St. Petersburg, Russia
195 rdf:type schema:Organization
196 grid-institutes:grid.423485.c schema:alternateName Ioffe Physical–Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia
197 schema:name Ioffe Physical–Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia
198 rdf:type schema:Organization
199 grid-institutes:grid.502986.0 schema:alternateName Submicron Heterostructures for Microelectronics Research and Engineering Center, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia
200 schema:name Ioffe Physical–Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia
201 Submicron Heterostructures for Microelectronics Research and Engineering Center, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia
202 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...