On current spreading in solar cells: a two-parameter tube model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-07-06

AUTHORS

M. A. Mintairov, V. V. Evstropov, S. A. Mintairov, N. Kh. Timoshina, M. Z. Shvarts, N. A. Kalyuzhnyy

ABSTRACT

The phenomenon of current spreading is essential for concentrator solar cells since it limits the conversion efficiency at high sunlight-concentration ratios. A model, which describes the regularities of the above phenomenon, is proposed and developed. The model uses a stylized representation of current lines and, respectively, of current tubes; it includes two resistive parameters accounting for the variable lateral (horizontal) component and the constant vertical component of the resistance of each tube. In the model the fact that the thickness of the spreading region is much less than the distance between the contact grid strips is taken into account. The calculated current—voltage (I–V) characteristics of a solar cell in the resistive and a nonresistive cases are obtained. The spreading-resistance I–V characteristic obtained by the voltage subtraction of these characteristics is nonlinear and depends on the photogenerated current. Thus, the equivalent electrical circuit of a solar cell includes a lumped nonlinear resistance, which depends parametrically on the photogenerated current. The comparison of experimental and calculated I–V characteristics by the example of Ge, GaAs, and GaInP solar cells is performed and both resistive parameters of the model are determined. The model describes correctly the regularities of spreading in single-junction solar cells and can be extended to multijunction solar cells. More... »

PAGES

970-975

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782616070162

DOI

http://dx.doi.org/10.1134/s1063782616070162

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034387517


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2014Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2014Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mintairov", 
        "givenName": "M. A.", 
        "id": "sg:person.013224043671.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013224043671.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2014Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2014Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Evstropov", 
        "givenName": "V. V.", 
        "id": "sg:person.013245131377.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013245131377.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2014Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2014Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mintairov", 
        "givenName": "S. A.", 
        "id": "sg:person.07536566153.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07536566153.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2014Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2014Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Timoshina", 
        "givenName": "N. Kh.", 
        "id": "sg:person.013705471175.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013705471175.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2014Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2014Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shvarts", 
        "givenName": "M. Z.", 
        "id": "sg:person.016332220465.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016332220465.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2014Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2014Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kalyuzhnyy", 
        "givenName": "N. A.", 
        "id": "sg:person.014537453054.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014537453054.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1063782612080143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020298766", 
          "https://doi.org/10.1134/s1063782612080143"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-07-06", 
    "datePublishedReg": "2016-07-06", 
    "description": "The phenomenon of current spreading is essential for concentrator solar cells since it limits the conversion efficiency at high sunlight-concentration ratios. A model, which describes the regularities of the above phenomenon, is proposed and developed. The model uses a stylized representation of current lines and, respectively, of current tubes; it includes two resistive parameters accounting for the variable lateral (horizontal) component and the constant vertical component of the resistance of each tube. In the model the fact that the thickness of the spreading region is much less than the distance between the contact grid strips is taken into account. The calculated current\u2014voltage (I\u2013V) characteristics of a solar cell in the resistive and a nonresistive cases are obtained. The spreading-resistance I\u2013V characteristic obtained by the voltage subtraction of these characteristics is nonlinear and depends on the photogenerated current. Thus, the equivalent electrical circuit of a solar cell includes a lumped nonlinear resistance, which depends parametrically on the photogenerated current. The comparison of experimental and calculated I\u2013V characteristics by the example of Ge, GaAs, and GaInP solar cells is performed and both resistive parameters of the model are determined. The model describes correctly the regularities of spreading in single-junction solar cells and can be extended to multijunction solar cells.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063782616070162", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "50"
      }
    ], 
    "keywords": [
      "solar cells", 
      "single-junction solar cells", 
      "GaInP solar cells", 
      "concentrator solar cells", 
      "sunlight concentration ratio", 
      "resistive parameters", 
      "current-voltage characteristics", 
      "equivalent electrical circuit", 
      "grid strips", 
      "current spreading", 
      "conversion efficiency", 
      "electrical circuit", 
      "current tube", 
      "nonlinear resistance", 
      "vertical component", 
      "tube model", 
      "current lines", 
      "lateral component", 
      "current", 
      "above phenomena", 
      "tube", 
      "GaAs", 
      "characteristics", 
      "parameters", 
      "thickness", 
      "circuit", 
      "resistance", 
      "Ge", 
      "model", 
      "phenomenon", 
      "efficiency", 
      "components", 
      "strips", 
      "spreading", 
      "ratio", 
      "stylized representation", 
      "account", 
      "regularity", 
      "comparison", 
      "distance", 
      "example", 
      "subtraction", 
      "region", 
      "lines", 
      "cases", 
      "cells", 
      "representation", 
      "fact"
    ], 
    "name": "On current spreading in solar cells: a two-parameter tube model", 
    "pagination": "970-975", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034387517"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782616070162"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782616070162", 
      "https://app.dimensions.ai/details/publication/pub.1034387517"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_689.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063782616070162"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782616070162'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782616070162'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782616070162'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782616070162'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      22 PREDICATES      75 URIs      65 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782616070162 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 anzsrc-for:0206
4 schema:author Ne6bf8fb524e542cbb084937e10c5d844
5 schema:citation sg:pub.10.1134/s1063782612080143
6 schema:datePublished 2016-07-06
7 schema:datePublishedReg 2016-07-06
8 schema:description The phenomenon of current spreading is essential for concentrator solar cells since it limits the conversion efficiency at high sunlight-concentration ratios. A model, which describes the regularities of the above phenomenon, is proposed and developed. The model uses a stylized representation of current lines and, respectively, of current tubes; it includes two resistive parameters accounting for the variable lateral (horizontal) component and the constant vertical component of the resistance of each tube. In the model the fact that the thickness of the spreading region is much less than the distance between the contact grid strips is taken into account. The calculated current—voltage (I–V) characteristics of a solar cell in the resistive and a nonresistive cases are obtained. The spreading-resistance I–V characteristic obtained by the voltage subtraction of these characteristics is nonlinear and depends on the photogenerated current. Thus, the equivalent electrical circuit of a solar cell includes a lumped nonlinear resistance, which depends parametrically on the photogenerated current. The comparison of experimental and calculated I–V characteristics by the example of Ge, GaAs, and GaInP solar cells is performed and both resistive parameters of the model are determined. The model describes correctly the regularities of spreading in single-junction solar cells and can be extended to multijunction solar cells.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N9290dc85bdc84ccbaa2730057e517587
13 Ne353b2ec51e04ad9a8b0085a1feb91db
14 sg:journal.1136692
15 schema:keywords GaAs
16 GaInP solar cells
17 Ge
18 above phenomena
19 account
20 cases
21 cells
22 characteristics
23 circuit
24 comparison
25 components
26 concentrator solar cells
27 conversion efficiency
28 current
29 current lines
30 current spreading
31 current tube
32 current-voltage characteristics
33 distance
34 efficiency
35 electrical circuit
36 equivalent electrical circuit
37 example
38 fact
39 grid strips
40 lateral component
41 lines
42 model
43 nonlinear resistance
44 parameters
45 phenomenon
46 ratio
47 region
48 regularity
49 representation
50 resistance
51 resistive parameters
52 single-junction solar cells
53 solar cells
54 spreading
55 strips
56 stylized representation
57 subtraction
58 sunlight concentration ratio
59 thickness
60 tube
61 tube model
62 vertical component
63 schema:name On current spreading in solar cells: a two-parameter tube model
64 schema:pagination 970-975
65 schema:productId N201aad62f467448c90e8b1befcccb017
66 N23a06a250d9345bfb221706c83187499
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034387517
68 https://doi.org/10.1134/s1063782616070162
69 schema:sdDatePublished 2022-05-20T07:31
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N63583295cf964534b92d81245a797e4e
72 schema:url https://doi.org/10.1134/s1063782616070162
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N07babfa3a9dc47688bab89667f277e44 rdf:first sg:person.013705471175.43
77 rdf:rest N419f10e7efdb4bd484cf6c0bd6de710c
78 N201aad62f467448c90e8b1befcccb017 schema:name dimensions_id
79 schema:value pub.1034387517
80 rdf:type schema:PropertyValue
81 N23a06a250d9345bfb221706c83187499 schema:name doi
82 schema:value 10.1134/s1063782616070162
83 rdf:type schema:PropertyValue
84 N31a45627d0d645068114d8e79d2f176b rdf:first sg:person.07536566153.48
85 rdf:rest N07babfa3a9dc47688bab89667f277e44
86 N419f10e7efdb4bd484cf6c0bd6de710c rdf:first sg:person.016332220465.73
87 rdf:rest Nd82bfd84a0e34bcb8656caba66e660fa
88 N63583295cf964534b92d81245a797e4e schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N9290dc85bdc84ccbaa2730057e517587 schema:issueNumber 7
91 rdf:type schema:PublicationIssue
92 Nd82bfd84a0e34bcb8656caba66e660fa rdf:first sg:person.014537453054.16
93 rdf:rest rdf:nil
94 Ne353b2ec51e04ad9a8b0085a1feb91db schema:volumeNumber 50
95 rdf:type schema:PublicationVolume
96 Ne68725b96342444a87cc9c1e56181c00 rdf:first sg:person.013245131377.70
97 rdf:rest N31a45627d0d645068114d8e79d2f176b
98 Ne6bf8fb524e542cbb084937e10c5d844 rdf:first sg:person.013224043671.45
99 rdf:rest Ne68725b96342444a87cc9c1e56181c00
100 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
101 schema:name Physical Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
104 schema:name Condensed Matter Physics
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
107 schema:name Quantum Physics
108 rdf:type schema:DefinedTerm
109 sg:journal.1136692 schema:issn 1063-7826
110 1090-6479
111 schema:name Semiconductors
112 schema:publisher Pleiades Publishing
113 rdf:type schema:Periodical
114 sg:person.013224043671.45 schema:affiliation grid-institutes:grid.423485.c
115 schema:familyName Mintairov
116 schema:givenName M. A.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013224043671.45
118 rdf:type schema:Person
119 sg:person.013245131377.70 schema:affiliation grid-institutes:grid.423485.c
120 schema:familyName Evstropov
121 schema:givenName V. V.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013245131377.70
123 rdf:type schema:Person
124 sg:person.013705471175.43 schema:affiliation grid-institutes:grid.423485.c
125 schema:familyName Timoshina
126 schema:givenName N. Kh.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013705471175.43
128 rdf:type schema:Person
129 sg:person.014537453054.16 schema:affiliation grid-institutes:grid.423485.c
130 schema:familyName Kalyuzhnyy
131 schema:givenName N. A.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014537453054.16
133 rdf:type schema:Person
134 sg:person.016332220465.73 schema:affiliation grid-institutes:grid.423485.c
135 schema:familyName Shvarts
136 schema:givenName M. Z.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016332220465.73
138 rdf:type schema:Person
139 sg:person.07536566153.48 schema:affiliation grid-institutes:grid.423485.c
140 schema:familyName Mintairov
141 schema:givenName S. A.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07536566153.48
143 rdf:type schema:Person
144 sg:pub.10.1134/s1063782612080143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020298766
145 https://doi.org/10.1134/s1063782612080143
146 rdf:type schema:CreativeWork
147 grid-institutes:grid.423485.c schema:alternateName Ioffe Physical—Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
148 schema:name Ioffe Physical—Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...