Electrochemical lithiation of silicon with varied crystallographic orientation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-07-06

AUTHORS

E. V. Astrova, A. M. Rumyantsev, G. V. Li, A. V. Nashchekin, D. Yu. Kazantsev, B. Ya. Ber, V. V. Zhdanov

ABSTRACT

The anisotropy of lithium intercalation into the silicon anodes of Li-ion batteries is studied on microstructures having the form of a grid with 0.5-μm-thick vertical walls and on silicon wafers of varied orientation. Electrochemical lithiation is performed at room temperature in the galvanostatic mode. The charging curves of the microstructure and flat Si anodes are examined. Secondary-ion mass spectroscopy is used to determine the distribution of intercalated Li atoms across the wafer thickness. The experimental data are analyzed in terms of the two-phase model in which the lithiation process is limited by the propagation velocity of the front between the amorphous alloy with a high Li content and the crystalline Si substrate. The relationship between the rates of Li intercalation into different crystallographic planes: (110), (111), and (100), is found to be V110: V111: V100 = 3.1: 1.1: 1.0. It is demonstrated that microstructure anodes with (110) walls have the highest cycle life and withstand ~600 cycles when charged and discharged at a rate of 0.36 C. More... »

PAGES

963-969

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782616070022

DOI

http://dx.doi.org/10.1134/s1063782616070022

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029570364


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Astrova", 
        "givenName": "E. V.", 
        "id": "sg:person.016627712637.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016627712637.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rumyantsev", 
        "givenName": "A. M.", 
        "id": "sg:person.012640342017.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012640342017.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "G. V.", 
        "id": "sg:person.012146626361.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012146626361.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nashchekin", 
        "givenName": "A. V.", 
        "id": "sg:person.01217702577.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217702577.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kazantsev", 
        "givenName": "D. Yu.", 
        "id": "sg:person.014463273123.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014463273123.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ber", 
        "givenName": "B. Ya.", 
        "id": "sg:person.013474671571.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013474671571.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhdanov", 
        "givenName": "V. V.", 
        "id": "sg:person.014233303017.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014233303017.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1023193515100080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032613734", 
          "https://doi.org/10.1134/s1023193515100080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037354155", 
          "https://doi.org/10.1038/nnano.2012.170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063784215040040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028376602", 
          "https://doi.org/10.1134/s1063784215040040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063785013110175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023765143", 
          "https://doi.org/10.1134/s1063785013110175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/526s93a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034864958", 
          "https://doi.org/10.1038/526s93a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782615040041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040545121", 
          "https://doi.org/10.1134/s1063782615040041"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-07-06", 
    "datePublishedReg": "2016-07-06", 
    "description": "The anisotropy of lithium intercalation into the silicon anodes of Li-ion batteries is studied on microstructures having the form of a grid with 0.5-\u03bcm-thick vertical walls and on silicon wafers of varied orientation. Electrochemical lithiation is performed at room temperature in the galvanostatic mode. The charging curves of the microstructure and flat Si anodes are examined. Secondary-ion mass spectroscopy is used to determine the distribution of intercalated Li atoms across the wafer thickness. The experimental data are analyzed in terms of the two-phase model in which the lithiation process is limited by the propagation velocity of the front between the amorphous alloy with a high Li content and the crystalline Si substrate. The relationship between the rates of Li intercalation into different crystallographic planes: (110), (111), and (100), is found to be V110: V111: V100 = 3.1: 1.1: 1.0. It is demonstrated that microstructure anodes with (110) walls have the highest cycle life and withstand ~600 cycles when charged and discharged at a rate of 0.36 C.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063782616070022", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "50"
      }
    ], 
    "keywords": [
      "high cycle life", 
      "crystalline Si substrate", 
      "secondary ion mass spectroscopy", 
      "Li-ion batteries", 
      "electrochemical lithiation", 
      "two-phase model", 
      "Si anode", 
      "silicon anodes", 
      "wafer thickness", 
      "vertical wall", 
      "Si substrate", 
      "silicon wafers", 
      "cycle life", 
      "lithiation process", 
      "amorphous alloys", 
      "galvanostatic mode", 
      "different crystallographic planes", 
      "crystallographic orientation", 
      "anode", 
      "propagation velocity", 
      "high Li content", 
      "microstructure", 
      "room temperature", 
      "experimental data", 
      "crystallographic planes", 
      "Li intercalation", 
      "lithium intercalation", 
      "Li content", 
      "lithiation", 
      "wafers", 
      "alloy", 
      "silicon", 
      "wall", 
      "grid", 
      "batteries", 
      "Li atoms", 
      "varied orientations", 
      "thickness", 
      "velocity", 
      "mass spectroscopy", 
      "intercalation", 
      "temperature", 
      "orientation", 
      "substrate", 
      "front", 
      "anisotropy", 
      "mode", 
      "plane", 
      "spectroscopy", 
      "process", 
      "rate", 
      "cycle", 
      "curves", 
      "distribution", 
      "model", 
      "content", 
      "V111", 
      "terms", 
      "atoms", 
      "data", 
      "form", 
      "life", 
      "relationship", 
      "V110", 
      "V100"
    ], 
    "name": "Electrochemical lithiation of silicon with varied crystallographic orientation", 
    "pagination": "963-969", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029570364"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782616070022"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782616070022", 
      "https://app.dimensions.ai/details/publication/pub.1029570364"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_710.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063782616070022"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782616070022'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782616070022'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782616070022'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782616070022'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      22 PREDICATES      97 URIs      82 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782616070022 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 anzsrc-for:0206
4 schema:author Nf522b3861423484fa382ed20d174931e
5 schema:citation sg:pub.10.1038/526s93a
6 sg:pub.10.1038/nnano.2012.170
7 sg:pub.10.1134/s1023193515100080
8 sg:pub.10.1134/s1063782615040041
9 sg:pub.10.1134/s1063784215040040
10 sg:pub.10.1134/s1063785013110175
11 schema:datePublished 2016-07-06
12 schema:datePublishedReg 2016-07-06
13 schema:description The anisotropy of lithium intercalation into the silicon anodes of Li-ion batteries is studied on microstructures having the form of a grid with 0.5-μm-thick vertical walls and on silicon wafers of varied orientation. Electrochemical lithiation is performed at room temperature in the galvanostatic mode. The charging curves of the microstructure and flat Si anodes are examined. Secondary-ion mass spectroscopy is used to determine the distribution of intercalated Li atoms across the wafer thickness. The experimental data are analyzed in terms of the two-phase model in which the lithiation process is limited by the propagation velocity of the front between the amorphous alloy with a high Li content and the crystalline Si substrate. The relationship between the rates of Li intercalation into different crystallographic planes: (110), (111), and (100), is found to be V110: V111: V100 = 3.1: 1.1: 1.0. It is demonstrated that microstructure anodes with (110) walls have the highest cycle life and withstand ~600 cycles when charged and discharged at a rate of 0.36 C.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N429fc84b89ea4cc5bfb4e1f05cc471ee
18 N63e5ed4ad3974bc4a3cfc7d89988e663
19 sg:journal.1136692
20 schema:keywords Li atoms
21 Li content
22 Li intercalation
23 Li-ion batteries
24 Si anode
25 Si substrate
26 V100
27 V110
28 V111
29 alloy
30 amorphous alloys
31 anisotropy
32 anode
33 atoms
34 batteries
35 content
36 crystalline Si substrate
37 crystallographic orientation
38 crystallographic planes
39 curves
40 cycle
41 cycle life
42 data
43 different crystallographic planes
44 distribution
45 electrochemical lithiation
46 experimental data
47 form
48 front
49 galvanostatic mode
50 grid
51 high Li content
52 high cycle life
53 intercalation
54 life
55 lithiation
56 lithiation process
57 lithium intercalation
58 mass spectroscopy
59 microstructure
60 mode
61 model
62 orientation
63 plane
64 process
65 propagation velocity
66 rate
67 relationship
68 room temperature
69 secondary ion mass spectroscopy
70 silicon
71 silicon anodes
72 silicon wafers
73 spectroscopy
74 substrate
75 temperature
76 terms
77 thickness
78 two-phase model
79 varied orientations
80 velocity
81 vertical wall
82 wafer thickness
83 wafers
84 wall
85 schema:name Electrochemical lithiation of silicon with varied crystallographic orientation
86 schema:pagination 963-969
87 schema:productId N7cb641d85d0f45dbade409530d143e20
88 Nd7d7b186de1e417791a8c815b5ae8f4e
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029570364
90 https://doi.org/10.1134/s1063782616070022
91 schema:sdDatePublished 2022-05-20T07:32
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher N9eac5bde3a0d47e8a166c0131925720b
94 schema:url https://doi.org/10.1134/s1063782616070022
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N170e886dc72f4928bf76ba15ae835a8f rdf:first sg:person.012640342017.93
99 rdf:rest N626cd89ce1f5428d90e2ef311173149d
100 N41e14886f3034745b112d3ff5f85854f rdf:first sg:person.01217702577.48
101 rdf:rest N9fc18e9cec874b78b91ec6606b924dba
102 N429fc84b89ea4cc5bfb4e1f05cc471ee schema:issueNumber 7
103 rdf:type schema:PublicationIssue
104 N626cd89ce1f5428d90e2ef311173149d rdf:first sg:person.012146626361.08
105 rdf:rest N41e14886f3034745b112d3ff5f85854f
106 N63e5ed4ad3974bc4a3cfc7d89988e663 schema:volumeNumber 50
107 rdf:type schema:PublicationVolume
108 N7038c6a4c76f41f094095a1f76baa325 rdf:first sg:person.013474671571.59
109 rdf:rest Nc0cb0828f1f54f34b6a7b98961ef98d7
110 N7cb641d85d0f45dbade409530d143e20 schema:name dimensions_id
111 schema:value pub.1029570364
112 rdf:type schema:PropertyValue
113 N9eac5bde3a0d47e8a166c0131925720b schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 N9fc18e9cec874b78b91ec6606b924dba rdf:first sg:person.014463273123.71
116 rdf:rest N7038c6a4c76f41f094095a1f76baa325
117 Nc0cb0828f1f54f34b6a7b98961ef98d7 rdf:first sg:person.014233303017.43
118 rdf:rest rdf:nil
119 Nd7d7b186de1e417791a8c815b5ae8f4e schema:name doi
120 schema:value 10.1134/s1063782616070022
121 rdf:type schema:PropertyValue
122 Nf522b3861423484fa382ed20d174931e rdf:first sg:person.016627712637.31
123 rdf:rest N170e886dc72f4928bf76ba15ae835a8f
124 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
125 schema:name Physical Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
128 schema:name Condensed Matter Physics
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
131 schema:name Quantum Physics
132 rdf:type schema:DefinedTerm
133 sg:journal.1136692 schema:issn 1063-7826
134 1090-6479
135 schema:name Semiconductors
136 schema:publisher Pleiades Publishing
137 rdf:type schema:Periodical
138 sg:person.012146626361.08 schema:affiliation grid-institutes:grid.423485.c
139 schema:familyName Li
140 schema:givenName G. V.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012146626361.08
142 rdf:type schema:Person
143 sg:person.01217702577.48 schema:affiliation grid-institutes:grid.423485.c
144 schema:familyName Nashchekin
145 schema:givenName A. V.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217702577.48
147 rdf:type schema:Person
148 sg:person.012640342017.93 schema:affiliation grid-institutes:grid.423485.c
149 schema:familyName Rumyantsev
150 schema:givenName A. M.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012640342017.93
152 rdf:type schema:Person
153 sg:person.013474671571.59 schema:affiliation grid-institutes:grid.423485.c
154 schema:familyName Ber
155 schema:givenName B. Ya.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013474671571.59
157 rdf:type schema:Person
158 sg:person.014233303017.43 schema:affiliation grid-institutes:grid.423485.c
159 schema:familyName Zhdanov
160 schema:givenName V. V.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014233303017.43
162 rdf:type schema:Person
163 sg:person.014463273123.71 schema:affiliation grid-institutes:grid.423485.c
164 schema:familyName Kazantsev
165 schema:givenName D. Yu.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014463273123.71
167 rdf:type schema:Person
168 sg:person.016627712637.31 schema:affiliation grid-institutes:grid.423485.c
169 schema:familyName Astrova
170 schema:givenName E. V.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016627712637.31
172 rdf:type schema:Person
173 sg:pub.10.1038/526s93a schema:sameAs https://app.dimensions.ai/details/publication/pub.1034864958
174 https://doi.org/10.1038/526s93a
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nnano.2012.170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037354155
177 https://doi.org/10.1038/nnano.2012.170
178 rdf:type schema:CreativeWork
179 sg:pub.10.1134/s1023193515100080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032613734
180 https://doi.org/10.1134/s1023193515100080
181 rdf:type schema:CreativeWork
182 sg:pub.10.1134/s1063782615040041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040545121
183 https://doi.org/10.1134/s1063782615040041
184 rdf:type schema:CreativeWork
185 sg:pub.10.1134/s1063784215040040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028376602
186 https://doi.org/10.1134/s1063784215040040
187 rdf:type schema:CreativeWork
188 sg:pub.10.1134/s1063785013110175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023765143
189 https://doi.org/10.1134/s1063785013110175
190 rdf:type schema:CreativeWork
191 grid-institutes:grid.423485.c schema:alternateName Ioffe Physical–Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
192 schema:name Ioffe Physical–Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...