Spatially correlated two-dimensional arrays of semiconductor and metal quantum dots in GaAs-based heterostructures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-12

AUTHORS

V. N. Nevedomskiy, N. A. Bert, V. V. Chaldyshev, V. V. Preobrazhernskiy, M. A. Putyato, B. R. Semyagin

ABSTRACT

A single molecular-beam epitaxy process is used to produce GaAs-based heterostructures containing two-dimensional arrays of InAs semiconductor quantum dots and AsSb metal quantum dots. The twodimensional array of AsSb metal quantum dots is formed by low-temperature epitaxy which provides a large excess of arsenic in the epitaxial GaAs layer. During the growth of subsequent layers at a higher temperature, excess arsenic forms nanoinclusions, i.e., metal quantum dots in the GaAs matrix. The two-dimensional array of such metal quantum dots is created by the δ doping of a low-temperature GaAs layer with antimony which serves as a precursor for the heterogeneous nucleation of metal quantum dots and accumulates in them with the formation of AsSb metal alloy. The two-dimensional array of InAs semiconductor quantum dots is formed via the Stranski–Krastanov mechanism at the GaAs surface. Between the arrays of metal and semiconductor quantum dots, a 3-nm-thick AlAs barrier layer is grown. The total spacing between the arrays of metal and semiconductor quantum dots is 10 nm. Electron microscopy of the structure shows that the arrangement of metal quantum dots and semiconductor quantum dots in the two-dimensional arrays is spatially correlated. The spatial correlation is apparently caused by elastic strain and stress fields produced by both AsSb metal and InAs semiconductor quantum dots in the GaAs matrix. More... »

PAGES

1661-1664

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s106378261512012x

DOI

http://dx.doi.org/10.1134/s106378261512012x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022939605


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nevedomskiy", 
        "givenName": "V. N.", 
        "id": "sg:person.012000201301.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012000201301.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bert", 
        "givenName": "N. A.", 
        "id": "sg:person.010314101551.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314101551.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saint Petersburg State Polytechnical University", 
          "id": "https://www.grid.ac/institutes/grid.32495.39", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
            "St. Petersburg State Polytechnical University, 195251, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chaldyshev", 
        "givenName": "V. V.", 
        "id": "sg:person.010716755351.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010716755351.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Semiconductor Physics", 
          "id": "https://www.grid.ac/institutes/grid.450314.7", 
          "name": [
            "Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Preobrazhernskiy", 
        "givenName": "V. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Semiconductor Physics", 
          "id": "https://www.grid.ac/institutes/grid.450314.7", 
          "name": [
            "Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Putyato", 
        "givenName": "M. A.", 
        "id": "sg:person.015271274417.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015271274417.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Semiconductor Physics", 
          "id": "https://www.grid.ac/institutes/grid.450314.7", 
          "name": [
            "Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Semyagin", 
        "givenName": "B. R.", 
        "id": "sg:person.011644303155.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644303155.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1063782613080150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011041588", 
          "https://doi.org/10.1134/s1063782613080150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782613090170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026850810", 
          "https://doi.org/10.1134/s1063782613090170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1187418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029491873", 
          "https://doi.org/10.1134/1.1187418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782614110207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036267154", 
          "https://doi.org/10.1134/s1063782614110207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s106378261205017x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044652301", 
          "https://doi.org/10.1134/s106378261205017x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782609120082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045685827", 
          "https://doi.org/10.1134/s1063782609120082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782609120082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045685827", 
          "https://doi.org/10.1134/s1063782609120082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782611120104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046547303", 
          "https://doi.org/10.1134/s1063782611120104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.103343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057650915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.105729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057653298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.123625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057687773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1426691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057705474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4804380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058075606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.96342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058136475"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "A single molecular-beam epitaxy process is used to produce GaAs-based heterostructures containing two-dimensional arrays of InAs semiconductor quantum dots and AsSb metal quantum dots. The twodimensional array of AsSb metal quantum dots is formed by low-temperature epitaxy which provides a large excess of arsenic in the epitaxial GaAs layer. During the growth of subsequent layers at a higher temperature, excess arsenic forms nanoinclusions, i.e., metal quantum dots in the GaAs matrix. The two-dimensional array of such metal quantum dots is created by the \u03b4 doping of a low-temperature GaAs layer with antimony which serves as a precursor for the heterogeneous nucleation of metal quantum dots and accumulates in them with the formation of AsSb metal alloy. The two-dimensional array of InAs semiconductor quantum dots is formed via the Stranski\u2013Krastanov mechanism at the GaAs surface. Between the arrays of metal and semiconductor quantum dots, a 3-nm-thick AlAs barrier layer is grown. The total spacing between the arrays of metal and semiconductor quantum dots is 10 nm. Electron microscopy of the structure shows that the arrangement of metal quantum dots and semiconductor quantum dots in the two-dimensional arrays is spatially correlated. The spatial correlation is apparently caused by elastic strain and stress fields produced by both AsSb metal and InAs semiconductor quantum dots in the GaAs matrix.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s106378261512012x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "name": "Spatially correlated two-dimensional arrays of semiconductor and metal quantum dots in GaAs-based heterostructures", 
    "pagination": "1661-1664", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6d49e91ea9128dcda2ce9d88b314100fd96e942a83045300b8d40695b2c2b3d6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s106378261512012x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022939605"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s106378261512012x", 
      "https://app.dimensions.ai/details/publication/pub.1022939605"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS106378261512012X"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s106378261512012x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s106378261512012x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s106378261512012x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s106378261512012x'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s106378261512012x schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N1a5c705c5d2447a4988055b6b84ca4ba
4 schema:citation sg:pub.10.1134/1.1187418
5 sg:pub.10.1134/s1063782609120082
6 sg:pub.10.1134/s1063782611120104
7 sg:pub.10.1134/s106378261205017x
8 sg:pub.10.1134/s1063782613080150
9 sg:pub.10.1134/s1063782613090170
10 sg:pub.10.1134/s1063782614110207
11 https://doi.org/10.1063/1.103343
12 https://doi.org/10.1063/1.105729
13 https://doi.org/10.1063/1.123625
14 https://doi.org/10.1063/1.1426691
15 https://doi.org/10.1063/1.4804380
16 https://doi.org/10.1063/1.96342
17 schema:datePublished 2015-12
18 schema:datePublishedReg 2015-12-01
19 schema:description A single molecular-beam epitaxy process is used to produce GaAs-based heterostructures containing two-dimensional arrays of InAs semiconductor quantum dots and AsSb metal quantum dots. The twodimensional array of AsSb metal quantum dots is formed by low-temperature epitaxy which provides a large excess of arsenic in the epitaxial GaAs layer. During the growth of subsequent layers at a higher temperature, excess arsenic forms nanoinclusions, i.e., metal quantum dots in the GaAs matrix. The two-dimensional array of such metal quantum dots is created by the δ doping of a low-temperature GaAs layer with antimony which serves as a precursor for the heterogeneous nucleation of metal quantum dots and accumulates in them with the formation of AsSb metal alloy. The two-dimensional array of InAs semiconductor quantum dots is formed via the Stranski–Krastanov mechanism at the GaAs surface. Between the arrays of metal and semiconductor quantum dots, a 3-nm-thick AlAs barrier layer is grown. The total spacing between the arrays of metal and semiconductor quantum dots is 10 nm. Electron microscopy of the structure shows that the arrangement of metal quantum dots and semiconductor quantum dots in the two-dimensional arrays is spatially correlated. The spatial correlation is apparently caused by elastic strain and stress fields produced by both AsSb metal and InAs semiconductor quantum dots in the GaAs matrix.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N57ea0c6188dd4e908589dff6b0e1352f
24 Nbdc7549a7f51403180f997c9e177fb5b
25 sg:journal.1136692
26 schema:name Spatially correlated two-dimensional arrays of semiconductor and metal quantum dots in GaAs-based heterostructures
27 schema:pagination 1661-1664
28 schema:productId N10e0c82271284ab0bb28332e6aba8571
29 N9994e10e90754c6280280ddb8a82f3e7
30 Nbcbe6e776cf34d4ea026835cd18dd0eb
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022939605
32 https://doi.org/10.1134/s106378261512012x
33 schema:sdDatePublished 2019-04-10T14:08
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Nbc43554c3d7a44bc84e43613ca916aa7
36 schema:url http://link.springer.com/10.1134%2FS106378261512012X
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N10e0c82271284ab0bb28332e6aba8571 schema:name readcube_id
41 schema:value 6d49e91ea9128dcda2ce9d88b314100fd96e942a83045300b8d40695b2c2b3d6
42 rdf:type schema:PropertyValue
43 N1a5c705c5d2447a4988055b6b84ca4ba rdf:first sg:person.012000201301.19
44 rdf:rest N378f8207f868405f9d766db0bc3a77dd
45 N2c00c1eeb3a041b3bcaf76734aaa256d rdf:first sg:person.015271274417.07
46 rdf:rest N67e4d6327e2c4a10a4647998f86b97a6
47 N378f8207f868405f9d766db0bc3a77dd rdf:first sg:person.010314101551.02
48 rdf:rest Ne8302917cf9c4c87898b60cd018f1ae3
49 N57ea0c6188dd4e908589dff6b0e1352f schema:volumeNumber 49
50 rdf:type schema:PublicationVolume
51 N67e4d6327e2c4a10a4647998f86b97a6 rdf:first sg:person.011644303155.87
52 rdf:rest rdf:nil
53 N9994e10e90754c6280280ddb8a82f3e7 schema:name doi
54 schema:value 10.1134/s106378261512012x
55 rdf:type schema:PropertyValue
56 Nbc43554c3d7a44bc84e43613ca916aa7 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 Nbcbe6e776cf34d4ea026835cd18dd0eb schema:name dimensions_id
59 schema:value pub.1022939605
60 rdf:type schema:PropertyValue
61 Nbdc7549a7f51403180f997c9e177fb5b schema:issueNumber 12
62 rdf:type schema:PublicationIssue
63 Nbecfc4b7df65462185af3a49449fee4d rdf:first Nd02a0d46298a4ab18c83e64d2bb33324
64 rdf:rest N2c00c1eeb3a041b3bcaf76734aaa256d
65 Nd02a0d46298a4ab18c83e64d2bb33324 schema:affiliation https://www.grid.ac/institutes/grid.450314.7
66 schema:familyName Preobrazhernskiy
67 schema:givenName V. V.
68 rdf:type schema:Person
69 Ne8302917cf9c4c87898b60cd018f1ae3 rdf:first sg:person.010716755351.29
70 rdf:rest Nbecfc4b7df65462185af3a49449fee4d
71 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
72 schema:name Engineering
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
75 schema:name Materials Engineering
76 rdf:type schema:DefinedTerm
77 sg:journal.1136692 schema:issn 1063-7826
78 1090-6479
79 schema:name Semiconductors
80 rdf:type schema:Periodical
81 sg:person.010314101551.02 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
82 schema:familyName Bert
83 schema:givenName N. A.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314101551.02
85 rdf:type schema:Person
86 sg:person.010716755351.29 schema:affiliation https://www.grid.ac/institutes/grid.32495.39
87 schema:familyName Chaldyshev
88 schema:givenName V. V.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010716755351.29
90 rdf:type schema:Person
91 sg:person.011644303155.87 schema:affiliation https://www.grid.ac/institutes/grid.450314.7
92 schema:familyName Semyagin
93 schema:givenName B. R.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644303155.87
95 rdf:type schema:Person
96 sg:person.012000201301.19 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
97 schema:familyName Nevedomskiy
98 schema:givenName V. N.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012000201301.19
100 rdf:type schema:Person
101 sg:person.015271274417.07 schema:affiliation https://www.grid.ac/institutes/grid.450314.7
102 schema:familyName Putyato
103 schema:givenName M. A.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015271274417.07
105 rdf:type schema:Person
106 sg:pub.10.1134/1.1187418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029491873
107 https://doi.org/10.1134/1.1187418
108 rdf:type schema:CreativeWork
109 sg:pub.10.1134/s1063782609120082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045685827
110 https://doi.org/10.1134/s1063782609120082
111 rdf:type schema:CreativeWork
112 sg:pub.10.1134/s1063782611120104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046547303
113 https://doi.org/10.1134/s1063782611120104
114 rdf:type schema:CreativeWork
115 sg:pub.10.1134/s106378261205017x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044652301
116 https://doi.org/10.1134/s106378261205017x
117 rdf:type schema:CreativeWork
118 sg:pub.10.1134/s1063782613080150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011041588
119 https://doi.org/10.1134/s1063782613080150
120 rdf:type schema:CreativeWork
121 sg:pub.10.1134/s1063782613090170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026850810
122 https://doi.org/10.1134/s1063782613090170
123 rdf:type schema:CreativeWork
124 sg:pub.10.1134/s1063782614110207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036267154
125 https://doi.org/10.1134/s1063782614110207
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1063/1.103343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057650915
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1063/1.105729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057653298
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1063/1.123625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057687773
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1063/1.1426691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057705474
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1063/1.4804380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058075606
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1063/1.96342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058136475
138 rdf:type schema:CreativeWork
139 https://www.grid.ac/institutes/grid.32495.39 schema:alternateName Saint Petersburg State Polytechnical University
140 schema:name Ioffe Physical–Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
141 St. Petersburg State Polytechnical University, 195251, St. Petersburg, Russia
142 rdf:type schema:Organization
143 https://www.grid.ac/institutes/grid.423485.c schema:alternateName Ioffe Institute
144 schema:name Ioffe Physical–Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
145 rdf:type schema:Organization
146 https://www.grid.ac/institutes/grid.450314.7 schema:alternateName Institute of Semiconductor Physics
147 schema:name Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...