Photoelectric properties of photodiodes based on InAs/InAsSbP heterostructures with photosensitive-area diameters of 0.1–2.0 mm View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-12-10

AUTHORS

I. A. Andreev, O. Yu. Serebrennikova, N. D. Il’inskaya, A. A. Pivovarova, G. G. Konovalov, E. V. Kunitsyna, V. V. Sherstnev, Yu. P. Yakovlev

ABSTRACT

The results of a study aimed at the development of high-efficiency photodiodes for the spectral range 1.5–3.8 μm with various photosensitive-area diameters in the range 0.1–2.0 mm are reported. Epitaxial techniques for the growth of InAs/InAsSbP photodiode heterostructures are developed. The distinctive features of the diodes are their high monochromatic current sensitivity Sλ of up to 1.6 A/W at the peak of the spectrum, λ = 3.0–3.4 μm, and the detectivity of the photodiodes, estimated by the experimentally measured noise level and the monochromatic current sensitivity, reaching at the spectrum peak a value of D* (λmax, 1000, 1) = (0.6–12) × 1010 cm Hz1/2 W–1 at T = 300 K. The bulk component of the reverse dark current in the photodiodes under study is constituted by two components: diffusion- and tunneling-related, with a low density of reverse dark currents j = (0.3–6) × 10–1 A/cm2 attained at a bias of U =–(0.2–0.4) V. The photodiodes are characterized by the product R0A = 0.4–3.2 Ω cm2. With the diameter of the photosensitive-area increased within the range 0.1–2.0 mm, the specific detectivity of a photodiode increases by nearly a factor of 2, which is due to the weaker effect of surface leakage currents with its increasing diameter. The response time of diodes of this kind varies within the range 1–300 ns, which enables their use in open-space optical communication systems in the atmospheric-transparency window. Photodiodes with a large sensitive area (up to 2.0 mm), high specific detectivity, and high photosensitivity can be used to detect absorption bands and record the concentrations of such substances as methane, ether, N2O, and phthorothanum. More... »

PAGES

1671-1677

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782615120027

DOI

http://dx.doi.org/10.1134/s1063782615120027

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048722710


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andreev", 
        "givenName": "I. A.", 
        "id": "sg:person.07626511635.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07626511635.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Serebrennikova", 
        "givenName": "O. Yu.", 
        "id": "sg:person.013243223127.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013243223127.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Il\u2019inskaya", 
        "givenName": "N. D.", 
        "id": "sg:person.010015773715.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010015773715.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pivovarova", 
        "givenName": "A. A.", 
        "id": "sg:person.011204601552.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011204601552.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konovalov", 
        "givenName": "G. G.", 
        "id": "sg:person.014136417154.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014136417154.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kunitsyna", 
        "givenName": "E. V.", 
        "id": "sg:person.011025456671.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011025456671.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sherstnev", 
        "givenName": "V. V.", 
        "id": "sg:person.011741151327.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011741151327.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yakovlev", 
        "givenName": "Yu. P.", 
        "id": "sg:person.012771052533.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012771052533.51"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015-12-10", 
    "datePublishedReg": "2015-12-10", 
    "description": "The results of a study aimed at the development of high-efficiency photodiodes for the spectral range 1.5\u20133.8 \u03bcm with various photosensitive-area diameters in the range 0.1\u20132.0 mm are reported. Epitaxial techniques for the growth of InAs/InAsSbP photodiode heterostructures are developed. The distinctive features of the diodes are their high monochromatic current sensitivity S\u03bb of up to 1.6 A/W at the peak of the spectrum, \u03bb = 3.0\u20133.4 \u03bcm, and the detectivity of the photodiodes, estimated by the experimentally measured noise level and the monochromatic current sensitivity, reaching at the spectrum peak a value of D* (\u03bbmax, 1000, 1) = (0.6\u201312) \u00d7 1010 cm Hz1/2 W\u20131 at T = 300 K. The bulk component of the reverse dark current in the photodiodes under study is constituted by two components: diffusion- and tunneling-related, with a low density of reverse dark currents j = (0.3\u20136) \u00d7 10\u20131 A/cm2 attained at a bias of U =\u2013(0.2\u20130.4) V. The photodiodes are characterized by the product R0A = 0.4\u20133.2 \u03a9 cm2. With the diameter of the photosensitive-area increased within the range 0.1\u20132.0 mm, the specific detectivity of a photodiode increases by nearly a factor of 2, which is due to the weaker effect of surface leakage currents with its increasing diameter. The response time of diodes of this kind varies within the range 1\u2013300 ns, which enables their use in open-space optical communication systems in the atmospheric-transparency window. Photodiodes with a large sensitive area (up to 2.0 mm), high specific detectivity, and high photosensitivity can be used to detect absorption bands and record the concentrations of such substances as methane, ether, N2O, and phthorothanum.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063782615120027", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "keywords": [
      "specific detectivity", 
      "reverse dark current", 
      "surface leakage currents", 
      "high specific detectivity", 
      "high-efficiency photodiodes", 
      "current sensitivity", 
      "atmospheric transparency window", 
      "spectral range 1.5", 
      "leakage current", 
      "epitaxial techniques", 
      "Hz1/2 W", 
      "dark current", 
      "photodiode increases", 
      "photoelectric properties", 
      "detectivity", 
      "high photosensitivity", 
      "photodiodes", 
      "bulk components", 
      "range 0.1", 
      "optical communication systems", 
      "diodes", 
      "noise level", 
      "large sensitive area", 
      "cm2", 
      "spectrum peak", 
      "response time", 
      "current", 
      "current j", 
      "diameter", 
      "low density", 
      "communication systems", 
      "range 1.5", 
      "range 1", 
      "InAsSbP", 
      "heterostructures", 
      "sensitive areas", 
      "R0A", 
      "methane", 
      "diffusion", 
      "properties", 
      "density", 
      "peak", 
      "components", 
      "absorption bands", 
      "technique", 
      "N2O", 
      "system", 
      "ns", 
      "window", 
      "sensitivity", 
      "band", 
      "distinctive features", 
      "kind", 
      "photosensitivity", 
      "results", 
      "such substances", 
      "values", 
      "increase", 
      "time", 
      "effect", 
      "spectra", 
      "area", 
      "concentration", 
      "use", 
      "ether", 
      "features", 
      "weak effect", 
      "study", 
      "development", 
      "growth", 
      "bias", 
      "substances", 
      "factors", 
      "levels"
    ], 
    "name": "Photoelectric properties of photodiodes based on InAs/InAsSbP heterostructures with photosensitive-area diameters of 0.1\u20132.0 mm", 
    "pagination": "1671-1677", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048722710"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782615120027"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782615120027", 
      "https://app.dimensions.ai/details/publication/pub.1048722710"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_668.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063782615120027"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782615120027'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782615120027'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782615120027'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782615120027'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      21 PREDICATES      100 URIs      91 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782615120027 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 anzsrc-for:0206
4 schema:author N43830d95f66b42e794114df8af6a7f83
5 schema:datePublished 2015-12-10
6 schema:datePublishedReg 2015-12-10
7 schema:description The results of a study aimed at the development of high-efficiency photodiodes for the spectral range 1.5–3.8 μm with various photosensitive-area diameters in the range 0.1–2.0 mm are reported. Epitaxial techniques for the growth of InAs/InAsSbP photodiode heterostructures are developed. The distinctive features of the diodes are their high monochromatic current sensitivity Sλ of up to 1.6 A/W at the peak of the spectrum, λ = 3.0–3.4 μm, and the detectivity of the photodiodes, estimated by the experimentally measured noise level and the monochromatic current sensitivity, reaching at the spectrum peak a value of D* (λmax, 1000, 1) = (0.6–12) × 1010 cm Hz1/2 W–1 at T = 300 K. The bulk component of the reverse dark current in the photodiodes under study is constituted by two components: diffusion- and tunneling-related, with a low density of reverse dark currents j = (0.3–6) × 10–1 A/cm2 attained at a bias of U =–(0.2–0.4) V. The photodiodes are characterized by the product R0A = 0.4–3.2 Ω cm2. With the diameter of the photosensitive-area increased within the range 0.1–2.0 mm, the specific detectivity of a photodiode increases by nearly a factor of 2, which is due to the weaker effect of surface leakage currents with its increasing diameter. The response time of diodes of this kind varies within the range 1–300 ns, which enables their use in open-space optical communication systems in the atmospheric-transparency window. Photodiodes with a large sensitive area (up to 2.0 mm), high specific detectivity, and high photosensitivity can be used to detect absorption bands and record the concentrations of such substances as methane, ether, N2O, and phthorothanum.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N5fb3db78d0bc4b8a827c4b6886bbb9ec
12 N68d7bc5c015e4f92ba879dc741d296fe
13 sg:journal.1136692
14 schema:keywords Hz1/2 W
15 InAsSbP
16 N2O
17 R0A
18 absorption bands
19 area
20 atmospheric transparency window
21 band
22 bias
23 bulk components
24 cm2
25 communication systems
26 components
27 concentration
28 current
29 current j
30 current sensitivity
31 dark current
32 density
33 detectivity
34 development
35 diameter
36 diffusion
37 diodes
38 distinctive features
39 effect
40 epitaxial techniques
41 ether
42 factors
43 features
44 growth
45 heterostructures
46 high photosensitivity
47 high specific detectivity
48 high-efficiency photodiodes
49 increase
50 kind
51 large sensitive area
52 leakage current
53 levels
54 low density
55 methane
56 noise level
57 ns
58 optical communication systems
59 peak
60 photodiode increases
61 photodiodes
62 photoelectric properties
63 photosensitivity
64 properties
65 range 0.1
66 range 1
67 range 1.5
68 response time
69 results
70 reverse dark current
71 sensitive areas
72 sensitivity
73 specific detectivity
74 spectra
75 spectral range 1.5
76 spectrum peak
77 study
78 substances
79 such substances
80 surface leakage currents
81 system
82 technique
83 time
84 use
85 values
86 weak effect
87 window
88 schema:name Photoelectric properties of photodiodes based on InAs/InAsSbP heterostructures with photosensitive-area diameters of 0.1–2.0 mm
89 schema:pagination 1671-1677
90 schema:productId N6087d1c6887e43e889f1791c867c4e61
91 Ne71dfcf243d545d0851e5ba66e01d57b
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048722710
93 https://doi.org/10.1134/s1063782615120027
94 schema:sdDatePublished 2022-06-01T22:13
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher N36e4de1b9af04d21a408573532637f3d
97 schema:url https://doi.org/10.1134/s1063782615120027
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N36e4de1b9af04d21a408573532637f3d schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 N43830d95f66b42e794114df8af6a7f83 rdf:first sg:person.07626511635.92
104 rdf:rest Nd75653caedf744cb8a7229e22e11a2f2
105 N52eee02d40a445c2856ead993639f787 rdf:first sg:person.011741151327.16
106 rdf:rest Nba60884a68ea47238aa50706c45ec51c
107 N5fb3db78d0bc4b8a827c4b6886bbb9ec schema:issueNumber 12
108 rdf:type schema:PublicationIssue
109 N6087d1c6887e43e889f1791c867c4e61 schema:name doi
110 schema:value 10.1134/s1063782615120027
111 rdf:type schema:PropertyValue
112 N68d7bc5c015e4f92ba879dc741d296fe schema:volumeNumber 49
113 rdf:type schema:PublicationVolume
114 Na050e27ab4384110b3431456f01c74fb rdf:first sg:person.011025456671.52
115 rdf:rest N52eee02d40a445c2856ead993639f787
116 Nb0b2af9627204a8c91e6026ed15f312c rdf:first sg:person.014136417154.81
117 rdf:rest Na050e27ab4384110b3431456f01c74fb
118 Nb75d8c8bae2041fc826f1a87d20e3eac rdf:first sg:person.010015773715.60
119 rdf:rest Nf06e49e077d14e93b256b6481768a355
120 Nba60884a68ea47238aa50706c45ec51c rdf:first sg:person.012771052533.51
121 rdf:rest rdf:nil
122 Nd75653caedf744cb8a7229e22e11a2f2 rdf:first sg:person.013243223127.13
123 rdf:rest Nb75d8c8bae2041fc826f1a87d20e3eac
124 Ne71dfcf243d545d0851e5ba66e01d57b schema:name dimensions_id
125 schema:value pub.1048722710
126 rdf:type schema:PropertyValue
127 Nf06e49e077d14e93b256b6481768a355 rdf:first sg:person.011204601552.21
128 rdf:rest Nb0b2af9627204a8c91e6026ed15f312c
129 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
130 schema:name Physical Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
133 schema:name Condensed Matter Physics
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
136 schema:name Quantum Physics
137 rdf:type schema:DefinedTerm
138 sg:journal.1136692 schema:issn 1063-7826
139 1090-6479
140 schema:name Semiconductors
141 schema:publisher Pleiades Publishing
142 rdf:type schema:Periodical
143 sg:person.010015773715.60 schema:affiliation grid-institutes:grid.423485.c
144 schema:familyName Il’inskaya
145 schema:givenName N. D.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010015773715.60
147 rdf:type schema:Person
148 sg:person.011025456671.52 schema:affiliation grid-institutes:grid.423485.c
149 schema:familyName Kunitsyna
150 schema:givenName E. V.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011025456671.52
152 rdf:type schema:Person
153 sg:person.011204601552.21 schema:affiliation grid-institutes:grid.423485.c
154 schema:familyName Pivovarova
155 schema:givenName A. A.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011204601552.21
157 rdf:type schema:Person
158 sg:person.011741151327.16 schema:affiliation grid-institutes:grid.423485.c
159 schema:familyName Sherstnev
160 schema:givenName V. V.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011741151327.16
162 rdf:type schema:Person
163 sg:person.012771052533.51 schema:affiliation grid-institutes:grid.423485.c
164 schema:familyName Yakovlev
165 schema:givenName Yu. P.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012771052533.51
167 rdf:type schema:Person
168 sg:person.013243223127.13 schema:affiliation grid-institutes:grid.423485.c
169 schema:familyName Serebrennikova
170 schema:givenName O. Yu.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013243223127.13
172 rdf:type schema:Person
173 sg:person.014136417154.81 schema:affiliation grid-institutes:grid.423485.c
174 schema:familyName Konovalov
175 schema:givenName G. G.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014136417154.81
177 rdf:type schema:Person
178 sg:person.07626511635.92 schema:affiliation grid-institutes:grid.423485.c
179 schema:familyName Andreev
180 schema:givenName I. A.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07626511635.92
182 rdf:type schema:Person
183 grid-institutes:grid.423485.c schema:alternateName Ioffe Physical–Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
184 schema:name Ioffe Physical–Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...