Ontology type: schema:ScholarlyArticle
2015-12-10
AUTHORSI. A. Andreev, O. Yu. Serebrennikova, N. D. Il’inskaya, A. A. Pivovarova, G. G. Konovalov, E. V. Kunitsyna, V. V. Sherstnev, Yu. P. Yakovlev
ABSTRACTThe results of a study aimed at the development of high-efficiency photodiodes for the spectral range 1.5–3.8 μm with various photosensitive-area diameters in the range 0.1–2.0 mm are reported. Epitaxial techniques for the growth of InAs/InAsSbP photodiode heterostructures are developed. The distinctive features of the diodes are their high monochromatic current sensitivity Sλ of up to 1.6 A/W at the peak of the spectrum, λ = 3.0–3.4 μm, and the detectivity of the photodiodes, estimated by the experimentally measured noise level and the monochromatic current sensitivity, reaching at the spectrum peak a value of D* (λmax, 1000, 1) = (0.6–12) × 1010 cm Hz1/2 W–1 at T = 300 K. The bulk component of the reverse dark current in the photodiodes under study is constituted by two components: diffusion- and tunneling-related, with a low density of reverse dark currents j = (0.3–6) × 10–1 A/cm2 attained at a bias of U =–(0.2–0.4) V. The photodiodes are characterized by the product R0A = 0.4–3.2 Ω cm2. With the diameter of the photosensitive-area increased within the range 0.1–2.0 mm, the specific detectivity of a photodiode increases by nearly a factor of 2, which is due to the weaker effect of surface leakage currents with its increasing diameter. The response time of diodes of this kind varies within the range 1–300 ns, which enables their use in open-space optical communication systems in the atmospheric-transparency window. Photodiodes with a large sensitive area (up to 2.0 mm), high specific detectivity, and high photosensitivity can be used to detect absorption bands and record the concentrations of such substances as methane, ether, N2O, and phthorothanum. More... »
PAGES1671-1677
http://scigraph.springernature.com/pub.10.1134/s1063782615120027
DOIhttp://dx.doi.org/10.1134/s1063782615120027
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1048722710
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Condensed Matter Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Quantum Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Andreev",
"givenName": "I. A.",
"id": "sg:person.07626511635.92",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07626511635.92"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Serebrennikova",
"givenName": "O. Yu.",
"id": "sg:person.013243223127.13",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013243223127.13"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Il\u2019inskaya",
"givenName": "N. D.",
"id": "sg:person.010015773715.60",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010015773715.60"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Pivovarova",
"givenName": "A. A.",
"id": "sg:person.011204601552.21",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011204601552.21"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Konovalov",
"givenName": "G. G.",
"id": "sg:person.014136417154.81",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014136417154.81"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Kunitsyna",
"givenName": "E. V.",
"id": "sg:person.011025456671.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011025456671.52"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Sherstnev",
"givenName": "V. V.",
"id": "sg:person.011741151327.16",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011741151327.16"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Yakovlev",
"givenName": "Yu. P.",
"id": "sg:person.012771052533.51",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012771052533.51"
],
"type": "Person"
}
],
"datePublished": "2015-12-10",
"datePublishedReg": "2015-12-10",
"description": "The results of a study aimed at the development of high-efficiency photodiodes for the spectral range 1.5\u20133.8 \u03bcm with various photosensitive-area diameters in the range 0.1\u20132.0 mm are reported. Epitaxial techniques for the growth of InAs/InAsSbP photodiode heterostructures are developed. The distinctive features of the diodes are their high monochromatic current sensitivity S\u03bb of up to 1.6 A/W at the peak of the spectrum, \u03bb = 3.0\u20133.4 \u03bcm, and the detectivity of the photodiodes, estimated by the experimentally measured noise level and the monochromatic current sensitivity, reaching at the spectrum peak a value of D* (\u03bbmax, 1000, 1) = (0.6\u201312) \u00d7 1010 cm Hz1/2 W\u20131 at T = 300 K. The bulk component of the reverse dark current in the photodiodes under study is constituted by two components: diffusion- and tunneling-related, with a low density of reverse dark currents j = (0.3\u20136) \u00d7 10\u20131 A/cm2 attained at a bias of U =\u2013(0.2\u20130.4) V. The photodiodes are characterized by the product R0A = 0.4\u20133.2 \u03a9 cm2. With the diameter of the photosensitive-area increased within the range 0.1\u20132.0 mm, the specific detectivity of a photodiode increases by nearly a factor of 2, which is due to the weaker effect of surface leakage currents with its increasing diameter. The response time of diodes of this kind varies within the range 1\u2013300 ns, which enables their use in open-space optical communication systems in the atmospheric-transparency window. Photodiodes with a large sensitive area (up to 2.0 mm), high specific detectivity, and high photosensitivity can be used to detect absorption bands and record the concentrations of such substances as methane, ether, N2O, and phthorothanum.",
"genre": "article",
"id": "sg:pub.10.1134/s1063782615120027",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136692",
"issn": [
"1063-7826",
"1090-6479"
],
"name": "Semiconductors",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "12",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "49"
}
],
"keywords": [
"specific detectivity",
"reverse dark current",
"surface leakage currents",
"high specific detectivity",
"high-efficiency photodiodes",
"current sensitivity",
"atmospheric transparency window",
"spectral range 1.5",
"leakage current",
"epitaxial techniques",
"Hz1/2 W",
"dark current",
"photodiode increases",
"photoelectric properties",
"detectivity",
"high photosensitivity",
"photodiodes",
"bulk components",
"range 0.1",
"optical communication systems",
"diodes",
"noise level",
"large sensitive area",
"cm2",
"spectrum peak",
"response time",
"current",
"current j",
"diameter",
"low density",
"communication systems",
"range 1.5",
"range 1",
"InAsSbP",
"heterostructures",
"sensitive areas",
"R0A",
"methane",
"diffusion",
"properties",
"density",
"peak",
"components",
"absorption bands",
"technique",
"N2O",
"system",
"ns",
"window",
"sensitivity",
"band",
"distinctive features",
"kind",
"photosensitivity",
"results",
"such substances",
"values",
"increase",
"time",
"effect",
"spectra",
"area",
"concentration",
"use",
"ether",
"features",
"weak effect",
"study",
"development",
"growth",
"bias",
"substances",
"factors",
"levels"
],
"name": "Photoelectric properties of photodiodes based on InAs/InAsSbP heterostructures with photosensitive-area diameters of 0.1\u20132.0 mm",
"pagination": "1671-1677",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1048722710"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s1063782615120027"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s1063782615120027",
"https://app.dimensions.ai/details/publication/pub.1048722710"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:13",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_668.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s1063782615120027"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782615120027'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782615120027'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782615120027'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782615120027'
This table displays all metadata directly associated to this object as RDF triples.
185 TRIPLES
21 PREDICATES
100 URIs
91 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s1063782615120027 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0204 |
3 | ″ | ″ | anzsrc-for:0206 |
4 | ″ | schema:author | N43830d95f66b42e794114df8af6a7f83 |
5 | ″ | schema:datePublished | 2015-12-10 |
6 | ″ | schema:datePublishedReg | 2015-12-10 |
7 | ″ | schema:description | The results of a study aimed at the development of high-efficiency photodiodes for the spectral range 1.5–3.8 μm with various photosensitive-area diameters in the range 0.1–2.0 mm are reported. Epitaxial techniques for the growth of InAs/InAsSbP photodiode heterostructures are developed. The distinctive features of the diodes are their high monochromatic current sensitivity Sλ of up to 1.6 A/W at the peak of the spectrum, λ = 3.0–3.4 μm, and the detectivity of the photodiodes, estimated by the experimentally measured noise level and the monochromatic current sensitivity, reaching at the spectrum peak a value of D* (λmax, 1000, 1) = (0.6–12) × 1010 cm Hz1/2 W–1 at T = 300 K. The bulk component of the reverse dark current in the photodiodes under study is constituted by two components: diffusion- and tunneling-related, with a low density of reverse dark currents j = (0.3–6) × 10–1 A/cm2 attained at a bias of U =–(0.2–0.4) V. The photodiodes are characterized by the product R0A = 0.4–3.2 Ω cm2. With the diameter of the photosensitive-area increased within the range 0.1–2.0 mm, the specific detectivity of a photodiode increases by nearly a factor of 2, which is due to the weaker effect of surface leakage currents with its increasing diameter. The response time of diodes of this kind varies within the range 1–300 ns, which enables their use in open-space optical communication systems in the atmospheric-transparency window. Photodiodes with a large sensitive area (up to 2.0 mm), high specific detectivity, and high photosensitivity can be used to detect absorption bands and record the concentrations of such substances as methane, ether, N2O, and phthorothanum. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N5fb3db78d0bc4b8a827c4b6886bbb9ec |
12 | ″ | ″ | N68d7bc5c015e4f92ba879dc741d296fe |
13 | ″ | ″ | sg:journal.1136692 |
14 | ″ | schema:keywords | Hz1/2 W |
15 | ″ | ″ | InAsSbP |
16 | ″ | ″ | N2O |
17 | ″ | ″ | R0A |
18 | ″ | ″ | absorption bands |
19 | ″ | ″ | area |
20 | ″ | ″ | atmospheric transparency window |
21 | ″ | ″ | band |
22 | ″ | ″ | bias |
23 | ″ | ″ | bulk components |
24 | ″ | ″ | cm2 |
25 | ″ | ″ | communication systems |
26 | ″ | ″ | components |
27 | ″ | ″ | concentration |
28 | ″ | ″ | current |
29 | ″ | ″ | current j |
30 | ″ | ″ | current sensitivity |
31 | ″ | ″ | dark current |
32 | ″ | ″ | density |
33 | ″ | ″ | detectivity |
34 | ″ | ″ | development |
35 | ″ | ″ | diameter |
36 | ″ | ″ | diffusion |
37 | ″ | ″ | diodes |
38 | ″ | ″ | distinctive features |
39 | ″ | ″ | effect |
40 | ″ | ″ | epitaxial techniques |
41 | ″ | ″ | ether |
42 | ″ | ″ | factors |
43 | ″ | ″ | features |
44 | ″ | ″ | growth |
45 | ″ | ″ | heterostructures |
46 | ″ | ″ | high photosensitivity |
47 | ″ | ″ | high specific detectivity |
48 | ″ | ″ | high-efficiency photodiodes |
49 | ″ | ″ | increase |
50 | ″ | ″ | kind |
51 | ″ | ″ | large sensitive area |
52 | ″ | ″ | leakage current |
53 | ″ | ″ | levels |
54 | ″ | ″ | low density |
55 | ″ | ″ | methane |
56 | ″ | ″ | noise level |
57 | ″ | ″ | ns |
58 | ″ | ″ | optical communication systems |
59 | ″ | ″ | peak |
60 | ″ | ″ | photodiode increases |
61 | ″ | ″ | photodiodes |
62 | ″ | ″ | photoelectric properties |
63 | ″ | ″ | photosensitivity |
64 | ″ | ″ | properties |
65 | ″ | ″ | range 0.1 |
66 | ″ | ″ | range 1 |
67 | ″ | ″ | range 1.5 |
68 | ″ | ″ | response time |
69 | ″ | ″ | results |
70 | ″ | ″ | reverse dark current |
71 | ″ | ″ | sensitive areas |
72 | ″ | ″ | sensitivity |
73 | ″ | ″ | specific detectivity |
74 | ″ | ″ | spectra |
75 | ″ | ″ | spectral range 1.5 |
76 | ″ | ″ | spectrum peak |
77 | ″ | ″ | study |
78 | ″ | ″ | substances |
79 | ″ | ″ | such substances |
80 | ″ | ″ | surface leakage currents |
81 | ″ | ″ | system |
82 | ″ | ″ | technique |
83 | ″ | ″ | time |
84 | ″ | ″ | use |
85 | ″ | ″ | values |
86 | ″ | ″ | weak effect |
87 | ″ | ″ | window |
88 | ″ | schema:name | Photoelectric properties of photodiodes based on InAs/InAsSbP heterostructures with photosensitive-area diameters of 0.1–2.0 mm |
89 | ″ | schema:pagination | 1671-1677 |
90 | ″ | schema:productId | N6087d1c6887e43e889f1791c867c4e61 |
91 | ″ | ″ | Ne71dfcf243d545d0851e5ba66e01d57b |
92 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1048722710 |
93 | ″ | ″ | https://doi.org/10.1134/s1063782615120027 |
94 | ″ | schema:sdDatePublished | 2022-06-01T22:13 |
95 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
96 | ″ | schema:sdPublisher | N36e4de1b9af04d21a408573532637f3d |
97 | ″ | schema:url | https://doi.org/10.1134/s1063782615120027 |
98 | ″ | sgo:license | sg:explorer/license/ |
99 | ″ | sgo:sdDataset | articles |
100 | ″ | rdf:type | schema:ScholarlyArticle |
101 | N36e4de1b9af04d21a408573532637f3d | schema:name | Springer Nature - SN SciGraph project |
102 | ″ | rdf:type | schema:Organization |
103 | N43830d95f66b42e794114df8af6a7f83 | rdf:first | sg:person.07626511635.92 |
104 | ″ | rdf:rest | Nd75653caedf744cb8a7229e22e11a2f2 |
105 | N52eee02d40a445c2856ead993639f787 | rdf:first | sg:person.011741151327.16 |
106 | ″ | rdf:rest | Nba60884a68ea47238aa50706c45ec51c |
107 | N5fb3db78d0bc4b8a827c4b6886bbb9ec | schema:issueNumber | 12 |
108 | ″ | rdf:type | schema:PublicationIssue |
109 | N6087d1c6887e43e889f1791c867c4e61 | schema:name | doi |
110 | ″ | schema:value | 10.1134/s1063782615120027 |
111 | ″ | rdf:type | schema:PropertyValue |
112 | N68d7bc5c015e4f92ba879dc741d296fe | schema:volumeNumber | 49 |
113 | ″ | rdf:type | schema:PublicationVolume |
114 | Na050e27ab4384110b3431456f01c74fb | rdf:first | sg:person.011025456671.52 |
115 | ″ | rdf:rest | N52eee02d40a445c2856ead993639f787 |
116 | Nb0b2af9627204a8c91e6026ed15f312c | rdf:first | sg:person.014136417154.81 |
117 | ″ | rdf:rest | Na050e27ab4384110b3431456f01c74fb |
118 | Nb75d8c8bae2041fc826f1a87d20e3eac | rdf:first | sg:person.010015773715.60 |
119 | ″ | rdf:rest | Nf06e49e077d14e93b256b6481768a355 |
120 | Nba60884a68ea47238aa50706c45ec51c | rdf:first | sg:person.012771052533.51 |
121 | ″ | rdf:rest | rdf:nil |
122 | Nd75653caedf744cb8a7229e22e11a2f2 | rdf:first | sg:person.013243223127.13 |
123 | ″ | rdf:rest | Nb75d8c8bae2041fc826f1a87d20e3eac |
124 | Ne71dfcf243d545d0851e5ba66e01d57b | schema:name | dimensions_id |
125 | ″ | schema:value | pub.1048722710 |
126 | ″ | rdf:type | schema:PropertyValue |
127 | Nf06e49e077d14e93b256b6481768a355 | rdf:first | sg:person.011204601552.21 |
128 | ″ | rdf:rest | Nb0b2af9627204a8c91e6026ed15f312c |
129 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
130 | ″ | schema:name | Physical Sciences |
131 | ″ | rdf:type | schema:DefinedTerm |
132 | anzsrc-for:0204 | schema:inDefinedTermSet | anzsrc-for: |
133 | ″ | schema:name | Condensed Matter Physics |
134 | ″ | rdf:type | schema:DefinedTerm |
135 | anzsrc-for:0206 | schema:inDefinedTermSet | anzsrc-for: |
136 | ″ | schema:name | Quantum Physics |
137 | ″ | rdf:type | schema:DefinedTerm |
138 | sg:journal.1136692 | schema:issn | 1063-7826 |
139 | ″ | ″ | 1090-6479 |
140 | ″ | schema:name | Semiconductors |
141 | ″ | schema:publisher | Pleiades Publishing |
142 | ″ | rdf:type | schema:Periodical |
143 | sg:person.010015773715.60 | schema:affiliation | grid-institutes:grid.423485.c |
144 | ″ | schema:familyName | Il’inskaya |
145 | ″ | schema:givenName | N. D. |
146 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010015773715.60 |
147 | ″ | rdf:type | schema:Person |
148 | sg:person.011025456671.52 | schema:affiliation | grid-institutes:grid.423485.c |
149 | ″ | schema:familyName | Kunitsyna |
150 | ″ | schema:givenName | E. V. |
151 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011025456671.52 |
152 | ″ | rdf:type | schema:Person |
153 | sg:person.011204601552.21 | schema:affiliation | grid-institutes:grid.423485.c |
154 | ″ | schema:familyName | Pivovarova |
155 | ″ | schema:givenName | A. A. |
156 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011204601552.21 |
157 | ″ | rdf:type | schema:Person |
158 | sg:person.011741151327.16 | schema:affiliation | grid-institutes:grid.423485.c |
159 | ″ | schema:familyName | Sherstnev |
160 | ″ | schema:givenName | V. V. |
161 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011741151327.16 |
162 | ″ | rdf:type | schema:Person |
163 | sg:person.012771052533.51 | schema:affiliation | grid-institutes:grid.423485.c |
164 | ″ | schema:familyName | Yakovlev |
165 | ″ | schema:givenName | Yu. P. |
166 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012771052533.51 |
167 | ″ | rdf:type | schema:Person |
168 | sg:person.013243223127.13 | schema:affiliation | grid-institutes:grid.423485.c |
169 | ″ | schema:familyName | Serebrennikova |
170 | ″ | schema:givenName | O. Yu. |
171 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013243223127.13 |
172 | ″ | rdf:type | schema:Person |
173 | sg:person.014136417154.81 | schema:affiliation | grid-institutes:grid.423485.c |
174 | ″ | schema:familyName | Konovalov |
175 | ″ | schema:givenName | G. G. |
176 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014136417154.81 |
177 | ″ | rdf:type | schema:Person |
178 | sg:person.07626511635.92 | schema:affiliation | grid-institutes:grid.423485.c |
179 | ″ | schema:familyName | Andreev |
180 | ″ | schema:givenName | I. A. |
181 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07626511635.92 |
182 | ″ | rdf:type | schema:Person |
183 | grid-institutes:grid.423485.c | schema:alternateName | Ioffe Physical–Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia |
184 | ″ | schema:name | Ioffe Physical–Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia |
185 | ″ | rdf:type | schema:Organization |