Ontology type: schema:ScholarlyArticle
2015-11-04
AUTHORSV. G. Talalaev, B. V. Novikov, G. E. Cirlin, H. S. Leipner
ABSTRACTThe spontaneous-emission spectra in the near-IR range (0.8–1.3 μm) from inverted tunnel-injection nanostructures are measured. These structures contain an InAs quantum-dot layer and an InGaAs quantum-well layer, separated by GaAs barrier spacer whose thickness varies in the range 3–9 nm. The temperature dependence of this emission in the range 5–295 K is investigated, both for optical excitation (photoluminescence) and for current injection in p–n junction (electroluminescence). At room temperature, current pumping proves more effective for inverted tunnel-injection nanostructures with a thin barrier (<6 nm), when the apexes of the quantum dots connect with the quantum well by narrow InGaAs straps (nanobridges). In that case, the quenching of the electroluminescence by heating from 5 to 295 K is slight. The quenching factor ST of the integrated intensity I is ST = I5/I295 ≈ 3. The temperature stability of the emission from inverted tunnel-injection nanostructures is discussed on the basis of extended Arrhenius analysis. More... »
PAGES1483-1492
http://scigraph.springernature.com/pub.10.1134/s1063782615110214
DOIhttp://dx.doi.org/10.1134/s1063782615110214
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1044767212
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Condensed Matter Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Quantum Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Martin Luther University Halle-Wittenberg, ZIK SiLi-nano, 06120, Halle, Germany",
"id": "http://www.grid.ac/institutes/grid.9018.0",
"name": [
"Fock Institute of Physics, St. Petersburg State University, 198504, Petrodvorets, Russia",
"Martin Luther University Halle-Wittenberg, ZIK SiLi-nano, 06120, Halle, Germany"
],
"type": "Organization"
},
"familyName": "Talalaev",
"givenName": "V. G.",
"id": "sg:person.0615207126.40",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615207126.40"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Fock Institute of Physics, St. Petersburg State University, 198504, Petrodvorets, Russia",
"id": "http://www.grid.ac/institutes/grid.15447.33",
"name": [
"Fock Institute of Physics, St. Petersburg State University, 198504, Petrodvorets, Russia"
],
"type": "Organization"
},
"familyName": "Novikov",
"givenName": "B. V.",
"id": "sg:person.014034276053.56",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014034276053.56"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Analytical Instrument Design, Russian Academy of Sciences, 190103, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.4886.2",
"name": [
"Academic University, Nanotechnology Center, Russian Academy of Sciences, 194021, St. Petersburg, Russia",
"Institute of Analytical Instrument Design, Russian Academy of Sciences, 190103, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Cirlin",
"givenName": "G. E.",
"id": "sg:person.014222264064.92",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014222264064.92"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Martin Luther University Halle-Wittenberg, ICMS, 06120, Halle, Germany",
"id": "http://www.grid.ac/institutes/grid.9018.0",
"name": [
"Martin Luther University Halle-Wittenberg, ICMS, 06120, Halle, Germany"
],
"type": "Organization"
},
"familyName": "Leipner",
"givenName": "H. S.",
"id": "sg:person.010527543506.05",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010527543506.05"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1134/s1063782614090218",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050469222",
"https://doi.org/10.1134/s1063782614090218"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s1063782610080178",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003366492",
"https://doi.org/10.1134/s1063782610080178"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-0-387-74191-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002197907",
"https://doi.org/10.1007/978-0-387-74191-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s1063782612110218",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025530561",
"https://doi.org/10.1134/s1063782612110218"
],
"type": "CreativeWork"
}
],
"datePublished": "2015-11-04",
"datePublishedReg": "2015-11-04",
"description": "The spontaneous-emission spectra in the near-IR range (0.8\u20131.3 \u03bcm) from inverted tunnel-injection nanostructures are measured. These structures contain an InAs quantum-dot layer and an InGaAs quantum-well layer, separated by GaAs barrier spacer whose thickness varies in the range 3\u20139 nm. The temperature dependence of this emission in the range 5\u2013295 K is investigated, both for optical excitation (photoluminescence) and for current injection in p\u2013n junction (electroluminescence). At room temperature, current pumping proves more effective for inverted tunnel-injection nanostructures with a thin barrier (<6 nm), when the apexes of the quantum dots connect with the quantum well by narrow InGaAs straps (nanobridges). In that case, the quenching of the electroluminescence by heating from 5 to 295 K is slight. The quenching factor ST of the integrated intensity I is ST = I5/I295 \u2248 3. The temperature stability of the emission from inverted tunnel-injection nanostructures is discussed on the basis of extended Arrhenius analysis.",
"genre": "article",
"id": "sg:pub.10.1134/s1063782615110214",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136692",
"issn": [
"1063-7826",
"1090-6479"
],
"name": "Semiconductors",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "11",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "49"
}
],
"keywords": [
"n junction",
"temperature stability",
"quantum dot layers",
"current pumping",
"current injection",
"room temperature",
"thin barrier",
"nanostructures",
"InAs quantum dot layers",
"quantum well layer",
"near-IR range",
"layer",
"temperature quenching",
"emission",
"spontaneous emission spectrum",
"temperature dependence",
"quantum dots",
"optical excitation",
"range 5",
"electroluminescence",
"Arrhenius analysis",
"range 3",
"thickness",
"spontaneous emission",
"temperature",
"strap",
"pumping",
"quenching",
"stability",
"InGaAs quantum well layer",
"excitation",
"structure",
"range",
"dots",
"dependence",
"intensity I",
"junction",
"spacer",
"ST",
"spectra",
"analysis",
"barriers",
"quantum",
"injection",
"basis",
"cases",
"apex"
],
"name": "Temperature quenching of spontaneous emission in tunnel-injection nanostructures",
"pagination": "1483-1492",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1044767212"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s1063782615110214"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s1063782615110214",
"https://app.dimensions.ai/details/publication/pub.1044767212"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:13",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_658.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s1063782615110214"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782615110214'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782615110214'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782615110214'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782615110214'
This table displays all metadata directly associated to this object as RDF triples.
156 TRIPLES
22 PREDICATES
77 URIs
64 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s1063782615110214 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0204 |
3 | ″ | ″ | anzsrc-for:0206 |
4 | ″ | schema:author | N3d157aa14396449985e966b509b40aa1 |
5 | ″ | schema:citation | sg:pub.10.1007/978-0-387-74191-8 |
6 | ″ | ″ | sg:pub.10.1134/s1063782610080178 |
7 | ″ | ″ | sg:pub.10.1134/s1063782612110218 |
8 | ″ | ″ | sg:pub.10.1134/s1063782614090218 |
9 | ″ | schema:datePublished | 2015-11-04 |
10 | ″ | schema:datePublishedReg | 2015-11-04 |
11 | ″ | schema:description | The spontaneous-emission spectra in the near-IR range (0.8–1.3 μm) from inverted tunnel-injection nanostructures are measured. These structures contain an InAs quantum-dot layer and an InGaAs quantum-well layer, separated by GaAs barrier spacer whose thickness varies in the range 3–9 nm. The temperature dependence of this emission in the range 5–295 K is investigated, both for optical excitation (photoluminescence) and for current injection in p–n junction (electroluminescence). At room temperature, current pumping proves more effective for inverted tunnel-injection nanostructures with a thin barrier (<6 nm), when the apexes of the quantum dots connect with the quantum well by narrow InGaAs straps (nanobridges). In that case, the quenching of the electroluminescence by heating from 5 to 295 K is slight. The quenching factor ST of the integrated intensity I is ST = I5/I295 ≈ 3. The temperature stability of the emission from inverted tunnel-injection nanostructures is discussed on the basis of extended Arrhenius analysis. |
12 | ″ | schema:genre | article |
13 | ″ | schema:inLanguage | en |
14 | ″ | schema:isAccessibleForFree | false |
15 | ″ | schema:isPartOf | N0876a838a5344de4a6ef8148ff7b11dc |
16 | ″ | ″ | Ndd76773ccb724992b0a9128bc16f6375 |
17 | ″ | ″ | sg:journal.1136692 |
18 | ″ | schema:keywords | Arrhenius analysis |
19 | ″ | ″ | InAs quantum dot layers |
20 | ″ | ″ | InGaAs quantum well layer |
21 | ″ | ″ | ST |
22 | ″ | ″ | analysis |
23 | ″ | ″ | apex |
24 | ″ | ″ | barriers |
25 | ″ | ″ | basis |
26 | ″ | ″ | cases |
27 | ″ | ″ | current injection |
28 | ″ | ″ | current pumping |
29 | ″ | ″ | dependence |
30 | ″ | ″ | dots |
31 | ″ | ″ | electroluminescence |
32 | ″ | ″ | emission |
33 | ″ | ″ | excitation |
34 | ″ | ″ | injection |
35 | ″ | ″ | intensity I |
36 | ″ | ″ | junction |
37 | ″ | ″ | layer |
38 | ″ | ″ | n junction |
39 | ″ | ″ | nanostructures |
40 | ″ | ″ | near-IR range |
41 | ″ | ″ | optical excitation |
42 | ″ | ″ | pumping |
43 | ″ | ″ | quantum |
44 | ″ | ″ | quantum dot layers |
45 | ″ | ″ | quantum dots |
46 | ″ | ″ | quantum well layer |
47 | ″ | ″ | quenching |
48 | ″ | ″ | range |
49 | ″ | ″ | range 3 |
50 | ″ | ″ | range 5 |
51 | ″ | ″ | room temperature |
52 | ″ | ″ | spacer |
53 | ″ | ″ | spectra |
54 | ″ | ″ | spontaneous emission |
55 | ″ | ″ | spontaneous emission spectrum |
56 | ″ | ″ | stability |
57 | ″ | ″ | strap |
58 | ″ | ″ | structure |
59 | ″ | ″ | temperature |
60 | ″ | ″ | temperature dependence |
61 | ″ | ″ | temperature quenching |
62 | ″ | ″ | temperature stability |
63 | ″ | ″ | thickness |
64 | ″ | ″ | thin barrier |
65 | ″ | schema:name | Temperature quenching of spontaneous emission in tunnel-injection nanostructures |
66 | ″ | schema:pagination | 1483-1492 |
67 | ″ | schema:productId | N8237d9406e51497da29ae8b0644b9d6b |
68 | ″ | ″ | Nb4896cd4f3f24151983e392fddff6ee7 |
69 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1044767212 |
70 | ″ | ″ | https://doi.org/10.1134/s1063782615110214 |
71 | ″ | schema:sdDatePublished | 2022-05-10T10:13 |
72 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
73 | ″ | schema:sdPublisher | Nfb8356ade37c434b840a76a22c7a7f49 |
74 | ″ | schema:url | https://doi.org/10.1134/s1063782615110214 |
75 | ″ | sgo:license | sg:explorer/license/ |
76 | ″ | sgo:sdDataset | articles |
77 | ″ | rdf:type | schema:ScholarlyArticle |
78 | N0876a838a5344de4a6ef8148ff7b11dc | schema:volumeNumber | 49 |
79 | ″ | rdf:type | schema:PublicationVolume |
80 | N1b7d1d862d8141178b6039f3c3a9200e | rdf:first | sg:person.014034276053.56 |
81 | ″ | rdf:rest | N570321b2eab948efb0cc345599949cbe |
82 | N3d157aa14396449985e966b509b40aa1 | rdf:first | sg:person.0615207126.40 |
83 | ″ | rdf:rest | N1b7d1d862d8141178b6039f3c3a9200e |
84 | N570321b2eab948efb0cc345599949cbe | rdf:first | sg:person.014222264064.92 |
85 | ″ | rdf:rest | Naa95539b40f248b4b82334ed85399d0f |
86 | N8237d9406e51497da29ae8b0644b9d6b | schema:name | doi |
87 | ″ | schema:value | 10.1134/s1063782615110214 |
88 | ″ | rdf:type | schema:PropertyValue |
89 | Naa95539b40f248b4b82334ed85399d0f | rdf:first | sg:person.010527543506.05 |
90 | ″ | rdf:rest | rdf:nil |
91 | Nb4896cd4f3f24151983e392fddff6ee7 | schema:name | dimensions_id |
92 | ″ | schema:value | pub.1044767212 |
93 | ″ | rdf:type | schema:PropertyValue |
94 | Ndd76773ccb724992b0a9128bc16f6375 | schema:issueNumber | 11 |
95 | ″ | rdf:type | schema:PublicationIssue |
96 | Nfb8356ade37c434b840a76a22c7a7f49 | schema:name | Springer Nature - SN SciGraph project |
97 | ″ | rdf:type | schema:Organization |
98 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
99 | ″ | schema:name | Physical Sciences |
100 | ″ | rdf:type | schema:DefinedTerm |
101 | anzsrc-for:0204 | schema:inDefinedTermSet | anzsrc-for: |
102 | ″ | schema:name | Condensed Matter Physics |
103 | ″ | rdf:type | schema:DefinedTerm |
104 | anzsrc-for:0206 | schema:inDefinedTermSet | anzsrc-for: |
105 | ″ | schema:name | Quantum Physics |
106 | ″ | rdf:type | schema:DefinedTerm |
107 | sg:journal.1136692 | schema:issn | 1063-7826 |
108 | ″ | ″ | 1090-6479 |
109 | ″ | schema:name | Semiconductors |
110 | ″ | schema:publisher | Pleiades Publishing |
111 | ″ | rdf:type | schema:Periodical |
112 | sg:person.010527543506.05 | schema:affiliation | grid-institutes:grid.9018.0 |
113 | ″ | schema:familyName | Leipner |
114 | ″ | schema:givenName | H. S. |
115 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010527543506.05 |
116 | ″ | rdf:type | schema:Person |
117 | sg:person.014034276053.56 | schema:affiliation | grid-institutes:grid.15447.33 |
118 | ″ | schema:familyName | Novikov |
119 | ″ | schema:givenName | B. V. |
120 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014034276053.56 |
121 | ″ | rdf:type | schema:Person |
122 | sg:person.014222264064.92 | schema:affiliation | grid-institutes:grid.4886.2 |
123 | ″ | schema:familyName | Cirlin |
124 | ″ | schema:givenName | G. E. |
125 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014222264064.92 |
126 | ″ | rdf:type | schema:Person |
127 | sg:person.0615207126.40 | schema:affiliation | grid-institutes:grid.9018.0 |
128 | ″ | schema:familyName | Talalaev |
129 | ″ | schema:givenName | V. G. |
130 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615207126.40 |
131 | ″ | rdf:type | schema:Person |
132 | sg:pub.10.1007/978-0-387-74191-8 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1002197907 |
133 | ″ | ″ | https://doi.org/10.1007/978-0-387-74191-8 |
134 | ″ | rdf:type | schema:CreativeWork |
135 | sg:pub.10.1134/s1063782610080178 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1003366492 |
136 | ″ | ″ | https://doi.org/10.1134/s1063782610080178 |
137 | ″ | rdf:type | schema:CreativeWork |
138 | sg:pub.10.1134/s1063782612110218 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1025530561 |
139 | ″ | ″ | https://doi.org/10.1134/s1063782612110218 |
140 | ″ | rdf:type | schema:CreativeWork |
141 | sg:pub.10.1134/s1063782614090218 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1050469222 |
142 | ″ | ″ | https://doi.org/10.1134/s1063782614090218 |
143 | ″ | rdf:type | schema:CreativeWork |
144 | grid-institutes:grid.15447.33 | schema:alternateName | Fock Institute of Physics, St. Petersburg State University, 198504, Petrodvorets, Russia |
145 | ″ | schema:name | Fock Institute of Physics, St. Petersburg State University, 198504, Petrodvorets, Russia |
146 | ″ | rdf:type | schema:Organization |
147 | grid-institutes:grid.4886.2 | schema:alternateName | Institute of Analytical Instrument Design, Russian Academy of Sciences, 190103, St. Petersburg, Russia |
148 | ″ | schema:name | Academic University, Nanotechnology Center, Russian Academy of Sciences, 194021, St. Petersburg, Russia |
149 | ″ | ″ | Institute of Analytical Instrument Design, Russian Academy of Sciences, 190103, St. Petersburg, Russia |
150 | ″ | rdf:type | schema:Organization |
151 | grid-institutes:grid.9018.0 | schema:alternateName | Martin Luther University Halle-Wittenberg, ICMS, 06120, Halle, Germany |
152 | ″ | ″ | Martin Luther University Halle-Wittenberg, ZIK SiLi-nano, 06120, Halle, Germany |
153 | ″ | schema:name | Fock Institute of Physics, St. Petersburg State University, 198504, Petrodvorets, Russia |
154 | ″ | ″ | Martin Luther University Halle-Wittenberg, ICMS, 06120, Halle, Germany |
155 | ″ | ″ | Martin Luther University Halle-Wittenberg, ZIK SiLi-nano, 06120, Halle, Germany |
156 | ″ | rdf:type | schema:Organization |