Temperature quenching of spontaneous emission in tunnel-injection nanostructures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-11-04

AUTHORS

V. G. Talalaev, B. V. Novikov, G. E. Cirlin, H. S. Leipner

ABSTRACT

The spontaneous-emission spectra in the near-IR range (0.8–1.3 μm) from inverted tunnel-injection nanostructures are measured. These structures contain an InAs quantum-dot layer and an InGaAs quantum-well layer, separated by GaAs barrier spacer whose thickness varies in the range 3–9 nm. The temperature dependence of this emission in the range 5–295 K is investigated, both for optical excitation (photoluminescence) and for current injection in p–n junction (electroluminescence). At room temperature, current pumping proves more effective for inverted tunnel-injection nanostructures with a thin barrier (<6 nm), when the apexes of the quantum dots connect with the quantum well by narrow InGaAs straps (nanobridges). In that case, the quenching of the electroluminescence by heating from 5 to 295 K is slight. The quenching factor ST of the integrated intensity I is ST = I5/I295 ≈ 3. The temperature stability of the emission from inverted tunnel-injection nanostructures is discussed on the basis of extended Arrhenius analysis. More... »

PAGES

1483-1492

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782615110214

DOI

http://dx.doi.org/10.1134/s1063782615110214

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044767212


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Martin Luther University Halle-Wittenberg, ZIK SiLi-nano, 06120, Halle, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9018.0", 
          "name": [
            "Fock Institute of Physics, St. Petersburg State University, 198504, Petrodvorets, Russia", 
            "Martin Luther University Halle-Wittenberg, ZIK SiLi-nano, 06120, Halle, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Talalaev", 
        "givenName": "V. G.", 
        "id": "sg:person.0615207126.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615207126.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fock Institute of Physics, St. Petersburg State University, 198504, Petrodvorets, Russia", 
          "id": "http://www.grid.ac/institutes/grid.15447.33", 
          "name": [
            "Fock Institute of Physics, St. Petersburg State University, 198504, Petrodvorets, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Novikov", 
        "givenName": "B. V.", 
        "id": "sg:person.014034276053.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014034276053.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Analytical Instrument Design, Russian Academy of Sciences, 190103, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Academic University, Nanotechnology Center, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
            "Institute of Analytical Instrument Design, Russian Academy of Sciences, 190103, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cirlin", 
        "givenName": "G. E.", 
        "id": "sg:person.014222264064.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014222264064.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Martin Luther University Halle-Wittenberg, ICMS, 06120, Halle, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9018.0", 
          "name": [
            "Martin Luther University Halle-Wittenberg, ICMS, 06120, Halle, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leipner", 
        "givenName": "H. S.", 
        "id": "sg:person.010527543506.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010527543506.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1063782614090218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050469222", 
          "https://doi.org/10.1134/s1063782614090218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782610080178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003366492", 
          "https://doi.org/10.1134/s1063782610080178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-74191-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002197907", 
          "https://doi.org/10.1007/978-0-387-74191-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782612110218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025530561", 
          "https://doi.org/10.1134/s1063782612110218"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-11-04", 
    "datePublishedReg": "2015-11-04", 
    "description": "The spontaneous-emission spectra in the near-IR range (0.8\u20131.3 \u03bcm) from inverted tunnel-injection nanostructures are measured. These structures contain an InAs quantum-dot layer and an InGaAs quantum-well layer, separated by GaAs barrier spacer whose thickness varies in the range 3\u20139 nm. The temperature dependence of this emission in the range 5\u2013295 K is investigated, both for optical excitation (photoluminescence) and for current injection in p\u2013n junction (electroluminescence). At room temperature, current pumping proves more effective for inverted tunnel-injection nanostructures with a thin barrier (<6 nm), when the apexes of the quantum dots connect with the quantum well by narrow InGaAs straps (nanobridges). In that case, the quenching of the electroluminescence by heating from 5 to 295 K is slight. The quenching factor ST of the integrated intensity I is ST = I5/I295 \u2248 3. The temperature stability of the emission from inverted tunnel-injection nanostructures is discussed on the basis of extended Arrhenius analysis.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063782615110214", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "keywords": [
      "n junction", 
      "temperature stability", 
      "quantum dot layers", 
      "current pumping", 
      "current injection", 
      "room temperature", 
      "thin barrier", 
      "nanostructures", 
      "InAs quantum dot layers", 
      "quantum well layer", 
      "near-IR range", 
      "layer", 
      "temperature quenching", 
      "emission", 
      "spontaneous emission spectrum", 
      "temperature dependence", 
      "quantum dots", 
      "optical excitation", 
      "range 5", 
      "electroluminescence", 
      "Arrhenius analysis", 
      "range 3", 
      "thickness", 
      "spontaneous emission", 
      "temperature", 
      "strap", 
      "pumping", 
      "quenching", 
      "stability", 
      "InGaAs quantum well layer", 
      "excitation", 
      "structure", 
      "range", 
      "dots", 
      "dependence", 
      "intensity I", 
      "junction", 
      "spacer", 
      "ST", 
      "spectra", 
      "analysis", 
      "barriers", 
      "quantum", 
      "injection", 
      "basis", 
      "cases", 
      "apex"
    ], 
    "name": "Temperature quenching of spontaneous emission in tunnel-injection nanostructures", 
    "pagination": "1483-1492", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044767212"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782615110214"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782615110214", 
      "https://app.dimensions.ai/details/publication/pub.1044767212"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_658.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063782615110214"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782615110214'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782615110214'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782615110214'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782615110214'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      22 PREDICATES      77 URIs      64 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782615110214 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 anzsrc-for:0206
4 schema:author N3d157aa14396449985e966b509b40aa1
5 schema:citation sg:pub.10.1007/978-0-387-74191-8
6 sg:pub.10.1134/s1063782610080178
7 sg:pub.10.1134/s1063782612110218
8 sg:pub.10.1134/s1063782614090218
9 schema:datePublished 2015-11-04
10 schema:datePublishedReg 2015-11-04
11 schema:description The spontaneous-emission spectra in the near-IR range (0.8–1.3 μm) from inverted tunnel-injection nanostructures are measured. These structures contain an InAs quantum-dot layer and an InGaAs quantum-well layer, separated by GaAs barrier spacer whose thickness varies in the range 3–9 nm. The temperature dependence of this emission in the range 5–295 K is investigated, both for optical excitation (photoluminescence) and for current injection in p–n junction (electroluminescence). At room temperature, current pumping proves more effective for inverted tunnel-injection nanostructures with a thin barrier (<6 nm), when the apexes of the quantum dots connect with the quantum well by narrow InGaAs straps (nanobridges). In that case, the quenching of the electroluminescence by heating from 5 to 295 K is slight. The quenching factor ST of the integrated intensity I is ST = I5/I295 ≈ 3. The temperature stability of the emission from inverted tunnel-injection nanostructures is discussed on the basis of extended Arrhenius analysis.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N0876a838a5344de4a6ef8148ff7b11dc
16 Ndd76773ccb724992b0a9128bc16f6375
17 sg:journal.1136692
18 schema:keywords Arrhenius analysis
19 InAs quantum dot layers
20 InGaAs quantum well layer
21 ST
22 analysis
23 apex
24 barriers
25 basis
26 cases
27 current injection
28 current pumping
29 dependence
30 dots
31 electroluminescence
32 emission
33 excitation
34 injection
35 intensity I
36 junction
37 layer
38 n junction
39 nanostructures
40 near-IR range
41 optical excitation
42 pumping
43 quantum
44 quantum dot layers
45 quantum dots
46 quantum well layer
47 quenching
48 range
49 range 3
50 range 5
51 room temperature
52 spacer
53 spectra
54 spontaneous emission
55 spontaneous emission spectrum
56 stability
57 strap
58 structure
59 temperature
60 temperature dependence
61 temperature quenching
62 temperature stability
63 thickness
64 thin barrier
65 schema:name Temperature quenching of spontaneous emission in tunnel-injection nanostructures
66 schema:pagination 1483-1492
67 schema:productId N8237d9406e51497da29ae8b0644b9d6b
68 Nb4896cd4f3f24151983e392fddff6ee7
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044767212
70 https://doi.org/10.1134/s1063782615110214
71 schema:sdDatePublished 2022-05-10T10:13
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher Nfb8356ade37c434b840a76a22c7a7f49
74 schema:url https://doi.org/10.1134/s1063782615110214
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N0876a838a5344de4a6ef8148ff7b11dc schema:volumeNumber 49
79 rdf:type schema:PublicationVolume
80 N1b7d1d862d8141178b6039f3c3a9200e rdf:first sg:person.014034276053.56
81 rdf:rest N570321b2eab948efb0cc345599949cbe
82 N3d157aa14396449985e966b509b40aa1 rdf:first sg:person.0615207126.40
83 rdf:rest N1b7d1d862d8141178b6039f3c3a9200e
84 N570321b2eab948efb0cc345599949cbe rdf:first sg:person.014222264064.92
85 rdf:rest Naa95539b40f248b4b82334ed85399d0f
86 N8237d9406e51497da29ae8b0644b9d6b schema:name doi
87 schema:value 10.1134/s1063782615110214
88 rdf:type schema:PropertyValue
89 Naa95539b40f248b4b82334ed85399d0f rdf:first sg:person.010527543506.05
90 rdf:rest rdf:nil
91 Nb4896cd4f3f24151983e392fddff6ee7 schema:name dimensions_id
92 schema:value pub.1044767212
93 rdf:type schema:PropertyValue
94 Ndd76773ccb724992b0a9128bc16f6375 schema:issueNumber 11
95 rdf:type schema:PublicationIssue
96 Nfb8356ade37c434b840a76a22c7a7f49 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
99 schema:name Physical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
102 schema:name Condensed Matter Physics
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
105 schema:name Quantum Physics
106 rdf:type schema:DefinedTerm
107 sg:journal.1136692 schema:issn 1063-7826
108 1090-6479
109 schema:name Semiconductors
110 schema:publisher Pleiades Publishing
111 rdf:type schema:Periodical
112 sg:person.010527543506.05 schema:affiliation grid-institutes:grid.9018.0
113 schema:familyName Leipner
114 schema:givenName H. S.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010527543506.05
116 rdf:type schema:Person
117 sg:person.014034276053.56 schema:affiliation grid-institutes:grid.15447.33
118 schema:familyName Novikov
119 schema:givenName B. V.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014034276053.56
121 rdf:type schema:Person
122 sg:person.014222264064.92 schema:affiliation grid-institutes:grid.4886.2
123 schema:familyName Cirlin
124 schema:givenName G. E.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014222264064.92
126 rdf:type schema:Person
127 sg:person.0615207126.40 schema:affiliation grid-institutes:grid.9018.0
128 schema:familyName Talalaev
129 schema:givenName V. G.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615207126.40
131 rdf:type schema:Person
132 sg:pub.10.1007/978-0-387-74191-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002197907
133 https://doi.org/10.1007/978-0-387-74191-8
134 rdf:type schema:CreativeWork
135 sg:pub.10.1134/s1063782610080178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003366492
136 https://doi.org/10.1134/s1063782610080178
137 rdf:type schema:CreativeWork
138 sg:pub.10.1134/s1063782612110218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025530561
139 https://doi.org/10.1134/s1063782612110218
140 rdf:type schema:CreativeWork
141 sg:pub.10.1134/s1063782614090218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050469222
142 https://doi.org/10.1134/s1063782614090218
143 rdf:type schema:CreativeWork
144 grid-institutes:grid.15447.33 schema:alternateName Fock Institute of Physics, St. Petersburg State University, 198504, Petrodvorets, Russia
145 schema:name Fock Institute of Physics, St. Petersburg State University, 198504, Petrodvorets, Russia
146 rdf:type schema:Organization
147 grid-institutes:grid.4886.2 schema:alternateName Institute of Analytical Instrument Design, Russian Academy of Sciences, 190103, St. Petersburg, Russia
148 schema:name Academic University, Nanotechnology Center, Russian Academy of Sciences, 194021, St. Petersburg, Russia
149 Institute of Analytical Instrument Design, Russian Academy of Sciences, 190103, St. Petersburg, Russia
150 rdf:type schema:Organization
151 grid-institutes:grid.9018.0 schema:alternateName Martin Luther University Halle-Wittenberg, ICMS, 06120, Halle, Germany
152 Martin Luther University Halle-Wittenberg, ZIK SiLi-nano, 06120, Halle, Germany
153 schema:name Fock Institute of Physics, St. Petersburg State University, 198504, Petrodvorets, Russia
154 Martin Luther University Halle-Wittenberg, ICMS, 06120, Halle, Germany
155 Martin Luther University Halle-Wittenberg, ZIK SiLi-nano, 06120, Halle, Germany
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...