Emission spectra of a laser based on an In(Ga)As/GaAs quantum-dot superlattice View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-10-13

AUTHORS

M. M. Sobolev, M. S. Buyalo, V. N. Nevedomskiy, Yu. M. Zadiranov, R. V. Zolotareva, A. P. Vasil’ev, V. M. Ustinov, E. L. Portnoi

ABSTRACT

The spectral characteristics of a laser with an active region based on a ten-layer system of In(Ga)As/GaAs vertically correlated quantum dots with 4.5-nm GaAs spacer layers between InAs quantum dots are studied under the conditions of spontaneous and stimulated emission, depending on the current and the duration of pump pulses. Data obtained by transmission electron microscopy and electroluminescence and absorption polarization anisotropy measurements make it possible to demonstrate that the investigated system of tunnel-coupled InAs quantum dots separated by thin GaAs barriers represents a quantum-dot superlattice. With an increase in the laser pump current, the electroluminescence intensity increases linearly and the spectral position of the electroluminescence maximum shifts to higher energies, which is caused by the dependence of the miniband density-of-states distribution on the pump current. Upon exceeding the threshold current, multimode lasing via the miniband ground state is observed. One of the lasing modes can be attributed to the zero-phonon line, and the other is determined by the longitudinal-optical phonon replica of quantum-dot emission. The results obtained give evidence that, under conditions of the laser pumping of an In(Ga)As/GaAs quantum-dot superlattice, strong coupling between the discrete electron states in the miniband and optical phonons takes place. This leads to the formation of quantum-dot polarons, resulting from the resonant mixing of electronic states whose energy separation is comparable to the optical-phonon energy. More... »

PAGES

1335-1340

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782615100243

DOI

http://dx.doi.org/10.1134/s1063782615100243

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001780788


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sobolev", 
        "givenName": "M. M.", 
        "id": "sg:person.01031612724.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031612724.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buyalo", 
        "givenName": "M. S.", 
        "id": "sg:person.01077726124.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077726124.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nevedomskiy", 
        "givenName": "V. N.", 
        "id": "sg:person.012000201301.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012000201301.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zadiranov", 
        "givenName": "Yu. M.", 
        "id": "sg:person.014121041567.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121041567.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zolotareva", 
        "givenName": "R. V.", 
        "id": "sg:person.015072116725.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015072116725.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasil\u2019ev", 
        "givenName": "A. P.", 
        "id": "sg:person.014334030356.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014334030356.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ustinov", 
        "givenName": "V. M.", 
        "id": "sg:person.010616411412.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010616411412.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical\u2013Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Portnoi", 
        "givenName": "E. L.", 
        "id": "sg:person.016237475737.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016237475737.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1063782611080203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040974896", 
          "https://doi.org/10.1134/s1063782611080203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-7-545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015998181", 
          "https://doi.org/10.1186/1556-276x-7-545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1187029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039056382", 
          "https://doi.org/10.1134/1.1187029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782614080235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001990157", 
          "https://doi.org/10.1134/s1063782614080235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1634663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022497601", 
          "https://doi.org/10.1134/1.1634663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782609040150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047684669", 
          "https://doi.org/10.1134/s1063782609040150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782612010186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050235272", 
          "https://doi.org/10.1134/s1063782612010186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782610060126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026732445", 
          "https://doi.org/10.1134/s1063782610060126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1187932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041682499", 
          "https://doi.org/10.1134/1.1187932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063785011090173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042074956", 
          "https://doi.org/10.1134/s1063785011090173"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-10-13", 
    "datePublishedReg": "2015-10-13", 
    "description": "The spectral characteristics of a laser with an active region based on a ten-layer system of In(Ga)As/GaAs vertically correlated quantum dots with 4.5-nm GaAs spacer layers between InAs quantum dots are studied under the conditions of spontaneous and stimulated emission, depending on the current and the duration of pump pulses. Data obtained by transmission electron microscopy and electroluminescence and absorption polarization anisotropy measurements make it possible to demonstrate that the investigated system of tunnel-coupled InAs quantum dots separated by thin GaAs barriers represents a quantum-dot superlattice. With an increase in the laser pump current, the electroluminescence intensity increases linearly and the spectral position of the electroluminescence maximum shifts to higher energies, which is caused by the dependence of the miniband density-of-states distribution on the pump current. Upon exceeding the threshold current, multimode lasing via the miniband ground state is observed. One of the lasing modes can be attributed to the zero-phonon line, and the other is determined by the longitudinal-optical phonon replica of quantum-dot emission. The results obtained give evidence that, under conditions of the laser pumping of an In(Ga)As/GaAs quantum-dot superlattice, strong coupling between the discrete electron states in the miniband and optical phonons takes place. This leads to the formation of quantum-dot polarons, resulting from the resonant mixing of electronic states whose energy separation is comparable to the optical-phonon energy.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063782615100243", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "keywords": [
      "quantum dot superlattices", 
      "InAs quantum dots", 
      "quantum dots", 
      "quantum-dot polarons", 
      "optical phonon energy", 
      "longitudinal optical phonon replicas", 
      "quantum dot emission", 
      "polarization anisotropy measurements", 
      "discrete electron state", 
      "zero-phonon line", 
      "electroluminescence intensity increases", 
      "thin GaAs barrier", 
      "pump pulse", 
      "laser pumping", 
      "GaAs spacer layers", 
      "optical phonons", 
      "electron states", 
      "resonant mixing", 
      "GaAs barrier", 
      "electronic states", 
      "spectral position", 
      "high energy", 
      "ground state", 
      "energy separation", 
      "transmission electron microscopy", 
      "active region", 
      "emission spectra", 
      "state distribution", 
      "phonon replicas", 
      "strong coupling", 
      "spacer layer", 
      "pump currents", 
      "superlattices", 
      "anisotropy measurements", 
      "laser", 
      "dots", 
      "maximum shift", 
      "intensity increases", 
      "spectral characteristics", 
      "electron microscopy", 
      "emission", 
      "energy", 
      "minibands", 
      "phonons", 
      "electroluminescence", 
      "pulses", 
      "polarons", 
      "GaAs", 
      "multimode", 
      "pumping", 
      "current", 
      "state", 
      "spectra", 
      "coupling", 
      "microscopy", 
      "dependence", 
      "measurements", 
      "mixing", 
      "density", 
      "mode", 
      "layer", 
      "shift", 
      "threshold", 
      "distribution", 
      "system", 
      "pump", 
      "replicas", 
      "region", 
      "formation", 
      "separation", 
      "lines", 
      "barriers", 
      "position", 
      "conditions", 
      "increase", 
      "results", 
      "characteristics", 
      "data", 
      "duration", 
      "place", 
      "evidence"
    ], 
    "name": "Emission spectra of a laser based on an In(Ga)As/GaAs quantum-dot superlattice", 
    "pagination": "1335-1340", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001780788"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782615100243"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782615100243", 
      "https://app.dimensions.ai/details/publication/pub.1001780788"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_657.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063782615100243"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782615100243'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782615100243'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782615100243'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782615100243'


 

This table displays all metadata directly associated to this object as RDF triples.

227 TRIPLES      21 PREDICATES      115 URIs      97 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782615100243 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N49ba07de6c924078af35b0c9784f3f99
4 schema:citation sg:pub.10.1134/1.1187029
5 sg:pub.10.1134/1.1187932
6 sg:pub.10.1134/1.1634663
7 sg:pub.10.1134/s1063782609040150
8 sg:pub.10.1134/s1063782610060126
9 sg:pub.10.1134/s1063782611080203
10 sg:pub.10.1134/s1063782612010186
11 sg:pub.10.1134/s1063782614080235
12 sg:pub.10.1134/s1063785011090173
13 sg:pub.10.1186/1556-276x-7-545
14 schema:datePublished 2015-10-13
15 schema:datePublishedReg 2015-10-13
16 schema:description The spectral characteristics of a laser with an active region based on a ten-layer system of In(Ga)As/GaAs vertically correlated quantum dots with 4.5-nm GaAs spacer layers between InAs quantum dots are studied under the conditions of spontaneous and stimulated emission, depending on the current and the duration of pump pulses. Data obtained by transmission electron microscopy and electroluminescence and absorption polarization anisotropy measurements make it possible to demonstrate that the investigated system of tunnel-coupled InAs quantum dots separated by thin GaAs barriers represents a quantum-dot superlattice. With an increase in the laser pump current, the electroluminescence intensity increases linearly and the spectral position of the electroluminescence maximum shifts to higher energies, which is caused by the dependence of the miniband density-of-states distribution on the pump current. Upon exceeding the threshold current, multimode lasing via the miniband ground state is observed. One of the lasing modes can be attributed to the zero-phonon line, and the other is determined by the longitudinal-optical phonon replica of quantum-dot emission. The results obtained give evidence that, under conditions of the laser pumping of an In(Ga)As/GaAs quantum-dot superlattice, strong coupling between the discrete electron states in the miniband and optical phonons takes place. This leads to the formation of quantum-dot polarons, resulting from the resonant mixing of electronic states whose energy separation is comparable to the optical-phonon energy.
17 schema:genre article
18 schema:isAccessibleForFree false
19 schema:isPartOf N8e670b6b6fc149368305bb5fef71fcc2
20 Nba0704007c7640f796c4802e5d2ba27e
21 sg:journal.1136692
22 schema:keywords GaAs
23 GaAs barrier
24 GaAs spacer layers
25 InAs quantum dots
26 active region
27 anisotropy measurements
28 barriers
29 characteristics
30 conditions
31 coupling
32 current
33 data
34 density
35 dependence
36 discrete electron state
37 distribution
38 dots
39 duration
40 electroluminescence
41 electroluminescence intensity increases
42 electron microscopy
43 electron states
44 electronic states
45 emission
46 emission spectra
47 energy
48 energy separation
49 evidence
50 formation
51 ground state
52 high energy
53 increase
54 intensity increases
55 laser
56 laser pumping
57 layer
58 lines
59 longitudinal optical phonon replicas
60 maximum shift
61 measurements
62 microscopy
63 minibands
64 mixing
65 mode
66 multimode
67 optical phonon energy
68 optical phonons
69 phonon replicas
70 phonons
71 place
72 polarization anisotropy measurements
73 polarons
74 position
75 pulses
76 pump
77 pump currents
78 pump pulse
79 pumping
80 quantum dot emission
81 quantum dot superlattices
82 quantum dots
83 quantum-dot polarons
84 region
85 replicas
86 resonant mixing
87 results
88 separation
89 shift
90 spacer layer
91 spectra
92 spectral characteristics
93 spectral position
94 state
95 state distribution
96 strong coupling
97 superlattices
98 system
99 thin GaAs barrier
100 threshold
101 transmission electron microscopy
102 zero-phonon line
103 schema:name Emission spectra of a laser based on an In(Ga)As/GaAs quantum-dot superlattice
104 schema:pagination 1335-1340
105 schema:productId N29c8493857254c72958bbb0c28e096cb
106 N6ad41d89052f46139f1573b66c675710
107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001780788
108 https://doi.org/10.1134/s1063782615100243
109 schema:sdDatePublished 2022-11-24T20:59
110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
111 schema:sdPublisher Nef05cd49fe174f5e860fa84e2eaebeb0
112 schema:url https://doi.org/10.1134/s1063782615100243
113 sgo:license sg:explorer/license/
114 sgo:sdDataset articles
115 rdf:type schema:ScholarlyArticle
116 N056ebac0e9ea4825be3ab0360b3bfe17 rdf:first sg:person.016237475737.31
117 rdf:rest rdf:nil
118 N09b6135b7ef140558844e58ae58f9c63 rdf:first sg:person.014121041567.87
119 rdf:rest Ne61d76b6846d4c4e83ecd84eb07b31b3
120 N23eab62bc17f40549b234740197b2a6c rdf:first sg:person.014334030356.12
121 rdf:rest N55b4a8b88030442284d41f82358dc5c2
122 N29c8493857254c72958bbb0c28e096cb schema:name dimensions_id
123 schema:value pub.1001780788
124 rdf:type schema:PropertyValue
125 N33d61b4b78d74d3db8d9e5e27512437e rdf:first sg:person.01077726124.24
126 rdf:rest N3f6aefd3fe0d4b739ca0edd2ef0591e3
127 N3f6aefd3fe0d4b739ca0edd2ef0591e3 rdf:first sg:person.012000201301.19
128 rdf:rest N09b6135b7ef140558844e58ae58f9c63
129 N49ba07de6c924078af35b0c9784f3f99 rdf:first sg:person.01031612724.92
130 rdf:rest N33d61b4b78d74d3db8d9e5e27512437e
131 N55b4a8b88030442284d41f82358dc5c2 rdf:first sg:person.010616411412.30
132 rdf:rest N056ebac0e9ea4825be3ab0360b3bfe17
133 N6ad41d89052f46139f1573b66c675710 schema:name doi
134 schema:value 10.1134/s1063782615100243
135 rdf:type schema:PropertyValue
136 N8e670b6b6fc149368305bb5fef71fcc2 schema:issueNumber 10
137 rdf:type schema:PublicationIssue
138 Nba0704007c7640f796c4802e5d2ba27e schema:volumeNumber 49
139 rdf:type schema:PublicationVolume
140 Ne61d76b6846d4c4e83ecd84eb07b31b3 rdf:first sg:person.015072116725.07
141 rdf:rest N23eab62bc17f40549b234740197b2a6c
142 Nef05cd49fe174f5e860fa84e2eaebeb0 schema:name Springer Nature - SN SciGraph project
143 rdf:type schema:Organization
144 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
145 schema:name Physical Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
148 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
149 rdf:type schema:DefinedTerm
150 sg:journal.1136692 schema:issn 1063-7826
151 1090-6479
152 schema:name Semiconductors
153 schema:publisher Pleiades Publishing
154 rdf:type schema:Periodical
155 sg:person.01031612724.92 schema:affiliation grid-institutes:grid.423485.c
156 schema:familyName Sobolev
157 schema:givenName M. M.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031612724.92
159 rdf:type schema:Person
160 sg:person.010616411412.30 schema:affiliation grid-institutes:grid.423485.c
161 schema:familyName Ustinov
162 schema:givenName V. M.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010616411412.30
164 rdf:type schema:Person
165 sg:person.01077726124.24 schema:affiliation grid-institutes:grid.423485.c
166 schema:familyName Buyalo
167 schema:givenName M. S.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077726124.24
169 rdf:type schema:Person
170 sg:person.012000201301.19 schema:affiliation grid-institutes:grid.423485.c
171 schema:familyName Nevedomskiy
172 schema:givenName V. N.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012000201301.19
174 rdf:type schema:Person
175 sg:person.014121041567.87 schema:affiliation grid-institutes:grid.423485.c
176 schema:familyName Zadiranov
177 schema:givenName Yu. M.
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121041567.87
179 rdf:type schema:Person
180 sg:person.014334030356.12 schema:affiliation grid-institutes:grid.423485.c
181 schema:familyName Vasil’ev
182 schema:givenName A. P.
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014334030356.12
184 rdf:type schema:Person
185 sg:person.015072116725.07 schema:affiliation grid-institutes:grid.423485.c
186 schema:familyName Zolotareva
187 schema:givenName R. V.
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015072116725.07
189 rdf:type schema:Person
190 sg:person.016237475737.31 schema:affiliation grid-institutes:grid.423485.c
191 schema:familyName Portnoi
192 schema:givenName E. L.
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016237475737.31
194 rdf:type schema:Person
195 sg:pub.10.1134/1.1187029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039056382
196 https://doi.org/10.1134/1.1187029
197 rdf:type schema:CreativeWork
198 sg:pub.10.1134/1.1187932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041682499
199 https://doi.org/10.1134/1.1187932
200 rdf:type schema:CreativeWork
201 sg:pub.10.1134/1.1634663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022497601
202 https://doi.org/10.1134/1.1634663
203 rdf:type schema:CreativeWork
204 sg:pub.10.1134/s1063782609040150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047684669
205 https://doi.org/10.1134/s1063782609040150
206 rdf:type schema:CreativeWork
207 sg:pub.10.1134/s1063782610060126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026732445
208 https://doi.org/10.1134/s1063782610060126
209 rdf:type schema:CreativeWork
210 sg:pub.10.1134/s1063782611080203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040974896
211 https://doi.org/10.1134/s1063782611080203
212 rdf:type schema:CreativeWork
213 sg:pub.10.1134/s1063782612010186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050235272
214 https://doi.org/10.1134/s1063782612010186
215 rdf:type schema:CreativeWork
216 sg:pub.10.1134/s1063782614080235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001990157
217 https://doi.org/10.1134/s1063782614080235
218 rdf:type schema:CreativeWork
219 sg:pub.10.1134/s1063785011090173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042074956
220 https://doi.org/10.1134/s1063785011090173
221 rdf:type schema:CreativeWork
222 sg:pub.10.1186/1556-276x-7-545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015998181
223 https://doi.org/10.1186/1556-276x-7-545
224 rdf:type schema:CreativeWork
225 grid-institutes:grid.423485.c schema:alternateName Ioffe Physical–Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
226 schema:name Ioffe Physical–Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
227 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...