Temperature dependence of the carrier lifetime in narrow-gap CdxHg1–xTe solid solutions: Radiative recombination View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-09-03

AUTHORS

N. L. Bazhenov, K. D. Mynbaev, G. G. Zegrya

ABSTRACT

The probability of the radiative recombination of carriers in narrow-gap semiconductors is analyzed for the example of CdxHg1–xTe solid solutions. Expressions are derived for the imaginary part of the dielectric permittivity in terms of the three-band Kane’s model with consideration for the nonparabolic dependence of the carrier energy on the wave vector. It is shown that taking into account this nonparabolicity of the energy spectrum of carriers modifies the dependence of the imaginary part of the dielectric permittivity on frequency. Expressions for the probability of radiative recombination, derived in terms of the simple parabolic model and Kane’s model with and without the nonparabolicity effect taken into account, are compared. It is shown that the contributions to recombination from electron transitions to heavy- and light-hole bands are close and the contribution from light holes cannot be neglected when calculating the radiative-recombination probability. More... »

PAGES

1170-1175

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782615090067

DOI

http://dx.doi.org/10.1134/s1063782615090067

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042076305


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bazhenov", 
        "givenName": "N. L.", 
        "id": "sg:person.016342426307.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016342426307.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ITMO University, 197101, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.35915.3b", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
            "ITMO University, 197101, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mynbaev", 
        "givenName": "K. D.", 
        "id": "sg:person.010274772027.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010274772027.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zegrya", 
        "givenName": "G. G.", 
        "id": "sg:person.07547630255.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07547630255.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1063782615040065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038772818", 
          "https://doi.org/10.1134/s1063782615040065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063784213100198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026899429", 
          "https://doi.org/10.1134/s1063784213100198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-010-1219-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031575118", 
          "https://doi.org/10.1007/s11664-010-1219-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782613110183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052002678", 
          "https://doi.org/10.1134/s1063782613110183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-006-0270-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029693974", 
          "https://doi.org/10.1007/s11664-006-0270-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-09-03", 
    "datePublishedReg": "2015-09-03", 
    "description": "The probability of the radiative recombination of carriers in narrow-gap semiconductors is analyzed for the example of CdxHg1\u2013xTe solid solutions. Expressions are derived for the imaginary part of the dielectric permittivity in terms of the three-band Kane\u2019s model with consideration for the nonparabolic dependence of the carrier energy on the wave vector. It is shown that taking into account this nonparabolicity of the energy spectrum of carriers modifies the dependence of the imaginary part of the dielectric permittivity on frequency. Expressions for the probability of radiative recombination, derived in terms of the simple parabolic model and Kane\u2019s model with and without the nonparabolicity effect taken into account, are compared. It is shown that the contributions to recombination from electron transitions to heavy- and light-hole bands are close and the contribution from light holes cannot be neglected when calculating the radiative-recombination probability.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063782615090067", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "keywords": [
      "solid solution", 
      "dielectric permittivity", 
      "carrier lifetime", 
      "carrier energy", 
      "narrow-gap semiconductors", 
      "radiative recombination", 
      "permittivity", 
      "Kane model", 
      "imaginary part", 
      "parabolic model", 
      "temperature dependence", 
      "semiconductors", 
      "wave vector", 
      "solution", 
      "three-band Kane model", 
      "model", 
      "dependence", 
      "light-hole bands", 
      "carriers", 
      "energy", 
      "energy spectrum", 
      "holes", 
      "nonparabolicity effects", 
      "light holes", 
      "account", 
      "electron transitions", 
      "simple parabolic model", 
      "lifetime", 
      "recombination", 
      "terms", 
      "nonparabolicity", 
      "part", 
      "frequency", 
      "consideration", 
      "contribution", 
      "band", 
      "effect", 
      "transition", 
      "example", 
      "spectra", 
      "probability", 
      "vector", 
      "expression", 
      "CdxHg1\u2013xTe solid solutions", 
      "nonparabolic dependence", 
      "radiative-recombination probability", 
      "narrow-gap CdxHg1\u2013xTe solid solutions"
    ], 
    "name": "Temperature dependence of the carrier lifetime in narrow-gap CdxHg1\u2013xTe solid solutions: Radiative recombination", 
    "pagination": "1170-1175", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042076305"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782615090067"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782615090067", 
      "https://app.dimensions.ai/details/publication/pub.1042076305"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_653.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063782615090067"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782615090067'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782615090067'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782615090067'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782615090067'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      22 PREDICATES      78 URIs      64 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782615090067 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 anzsrc-for:0206
4 schema:author N904ae10ebecc43bb8f0cc3d5e5c8fd89
5 schema:citation sg:pub.10.1007/s11664-006-0270-2
6 sg:pub.10.1007/s11664-010-1219-z
7 sg:pub.10.1134/s1063782613110183
8 sg:pub.10.1134/s1063782615040065
9 sg:pub.10.1134/s1063784213100198
10 schema:datePublished 2015-09-03
11 schema:datePublishedReg 2015-09-03
12 schema:description The probability of the radiative recombination of carriers in narrow-gap semiconductors is analyzed for the example of CdxHg1–xTe solid solutions. Expressions are derived for the imaginary part of the dielectric permittivity in terms of the three-band Kane’s model with consideration for the nonparabolic dependence of the carrier energy on the wave vector. It is shown that taking into account this nonparabolicity of the energy spectrum of carriers modifies the dependence of the imaginary part of the dielectric permittivity on frequency. Expressions for the probability of radiative recombination, derived in terms of the simple parabolic model and Kane’s model with and without the nonparabolicity effect taken into account, are compared. It is shown that the contributions to recombination from electron transitions to heavy- and light-hole bands are close and the contribution from light holes cannot be neglected when calculating the radiative-recombination probability.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N396426c6815c4ceea6bf8efd67ec2403
17 Na6d7b36ab95a4bf4b1ca514d975b304b
18 sg:journal.1136692
19 schema:keywords CdxHg1–xTe solid solutions
20 Kane model
21 account
22 band
23 carrier energy
24 carrier lifetime
25 carriers
26 consideration
27 contribution
28 dependence
29 dielectric permittivity
30 effect
31 electron transitions
32 energy
33 energy spectrum
34 example
35 expression
36 frequency
37 holes
38 imaginary part
39 lifetime
40 light holes
41 light-hole bands
42 model
43 narrow-gap CdxHg1–xTe solid solutions
44 narrow-gap semiconductors
45 nonparabolic dependence
46 nonparabolicity
47 nonparabolicity effects
48 parabolic model
49 part
50 permittivity
51 probability
52 radiative recombination
53 radiative-recombination probability
54 recombination
55 semiconductors
56 simple parabolic model
57 solid solution
58 solution
59 spectra
60 temperature dependence
61 terms
62 three-band Kane model
63 transition
64 vector
65 wave vector
66 schema:name Temperature dependence of the carrier lifetime in narrow-gap CdxHg1–xTe solid solutions: Radiative recombination
67 schema:pagination 1170-1175
68 schema:productId N0a99ab6bb7084611a31edd86f708914a
69 N159b759d4dd4488c90cc81467011b97b
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042076305
71 https://doi.org/10.1134/s1063782615090067
72 schema:sdDatePublished 2021-12-01T19:32
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher Ncabcbd92a7c0438eba7f211e29fcd91f
75 schema:url https://doi.org/10.1134/s1063782615090067
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N0a99ab6bb7084611a31edd86f708914a schema:name doi
80 schema:value 10.1134/s1063782615090067
81 rdf:type schema:PropertyValue
82 N159b759d4dd4488c90cc81467011b97b schema:name dimensions_id
83 schema:value pub.1042076305
84 rdf:type schema:PropertyValue
85 N396426c6815c4ceea6bf8efd67ec2403 schema:issueNumber 9
86 rdf:type schema:PublicationIssue
87 N42cf318312e743caa7492a520ea34826 rdf:first sg:person.07547630255.44
88 rdf:rest rdf:nil
89 N58f029fdf1b44783ae83c95e28624071 rdf:first sg:person.010274772027.40
90 rdf:rest N42cf318312e743caa7492a520ea34826
91 N904ae10ebecc43bb8f0cc3d5e5c8fd89 rdf:first sg:person.016342426307.11
92 rdf:rest N58f029fdf1b44783ae83c95e28624071
93 Na6d7b36ab95a4bf4b1ca514d975b304b schema:volumeNumber 49
94 rdf:type schema:PublicationVolume
95 Ncabcbd92a7c0438eba7f211e29fcd91f schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
98 schema:name Physical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
101 schema:name Condensed Matter Physics
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
104 schema:name Quantum Physics
105 rdf:type schema:DefinedTerm
106 sg:journal.1136692 schema:issn 1063-7826
107 1090-6479
108 schema:name Semiconductors
109 schema:publisher Pleiades Publishing
110 rdf:type schema:Periodical
111 sg:person.010274772027.40 schema:affiliation grid-institutes:grid.35915.3b
112 schema:familyName Mynbaev
113 schema:givenName K. D.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010274772027.40
115 rdf:type schema:Person
116 sg:person.016342426307.11 schema:affiliation grid-institutes:grid.423485.c
117 schema:familyName Bazhenov
118 schema:givenName N. L.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016342426307.11
120 rdf:type schema:Person
121 sg:person.07547630255.44 schema:affiliation grid-institutes:grid.423485.c
122 schema:familyName Zegrya
123 schema:givenName G. G.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07547630255.44
125 rdf:type schema:Person
126 sg:pub.10.1007/s11664-006-0270-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029693974
127 https://doi.org/10.1007/s11664-006-0270-2
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s11664-010-1219-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1031575118
130 https://doi.org/10.1007/s11664-010-1219-z
131 rdf:type schema:CreativeWork
132 sg:pub.10.1134/s1063782613110183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052002678
133 https://doi.org/10.1134/s1063782613110183
134 rdf:type schema:CreativeWork
135 sg:pub.10.1134/s1063782615040065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038772818
136 https://doi.org/10.1134/s1063782615040065
137 rdf:type schema:CreativeWork
138 sg:pub.10.1134/s1063784213100198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026899429
139 https://doi.org/10.1134/s1063784213100198
140 rdf:type schema:CreativeWork
141 grid-institutes:grid.35915.3b schema:alternateName ITMO University, 197101, St. Petersburg, Russia
142 schema:name ITMO University, 197101, St. Petersburg, Russia
143 Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
144 rdf:type schema:Organization
145 grid-institutes:grid.423485.c schema:alternateName Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
146 schema:name Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...