Ontology type: schema:ScholarlyArticle
2015-08-02
AUTHORSM. M. Mezdrogina, M. V. Eremenko, A. N. Smirnov, V. N. Petrov, E. I. Terukov
ABSTRACTThe effect of the Er3+-ion excitation type on the photoluminescence spectra of crystalline ZnO(ZnO〈Ce, Yb, Er〉) films is determined in the cases of resonant (λ = 532 nm, Er3+-ion transition from 4S3/2, 2H11/2 levels to 4I15/2) and non-resonant (λ = 325 nm, in the region near the ZnO band-edge emission) excitation. It is shown that resonant excitation gives rise to lines with various emission intensities, characteristic of the Er3+-ion intracenter 4f transition with λ = 1535 nm when doping crystalline ZnO films with three rare-earth ions (REIs, Ce, Yb, Er) or with two impurities (Ce, Er) or (Er, Yb), independently of the measurement temperature (T = 83 and 300 K). The doping of crystalline ZnO films with rare-earth impurities (Ce, Yb, Er) leads to the efficient transfer of energy to REIs, a consequence of which is the intense emission of an Er3+ ion in the IR spectral region at λmax = 1535 nm. The kick-out diffusion mechanism is used upon the sequential introduction of impurities into semiconductor matrices and during the postgrowth annealing of the ZnO films under study. The crystalline ZnO films doped with Ce, Yb, Er also exhibit intense emission in the visible spectral region at room temperature, which makes them promising materials for optoelectronics. More... »
PAGES992-999
http://scigraph.springernature.com/pub.10.1134/s1063782615080138
DOIhttp://dx.doi.org/10.1134/s1063782615080138
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1053666327
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Condensed Matter Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Quantum Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Ioffe Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Mezdrogina",
"givenName": "M. M.",
"id": "sg:person.014240764435.25",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014240764435.25"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Eremenko",
"givenName": "M. V.",
"id": "sg:person.010725035161.80",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010725035161.80"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Smirnov",
"givenName": "A. N.",
"id": "sg:person.014243650571.24",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014243650571.24"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Petrov",
"givenName": "V. N.",
"id": "sg:person.010547461051.73",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010547461051.73"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Saint Petersburg Electrotechnical University \u201cLETI\u201d, ul. Prof. Popova 5, 197376, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.9905.5",
"name": [
"Ioffe Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia",
"Saint Petersburg Electrotechnical University \u201cLETI\u201d, ul. Prof. Popova 5, 197376, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Terukov",
"givenName": "E. I.",
"id": "sg:person.016615421175.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016615421175.12"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s11664-006-0258-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033260240",
"https://doi.org/10.1007/s11664-006-0258-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s1063783412060248",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038872603",
"https://doi.org/10.1134/s1063783412060248"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s1063782612070135",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032082329",
"https://doi.org/10.1134/s1063782612070135"
],
"type": "CreativeWork"
}
],
"datePublished": "2015-08-02",
"datePublishedReg": "2015-08-02",
"description": "The effect of the Er3+-ion excitation type on the photoluminescence spectra of crystalline ZnO(ZnO\u3008Ce, Yb, Er\u3009) films is determined in the cases of resonant (\u03bb = 532 nm, Er3+-ion transition from 4S3/2, 2H11/2 levels to 4I15/2) and non-resonant (\u03bb = 325 nm, in the region near the ZnO band-edge emission) excitation. It is shown that resonant excitation gives rise to lines with various emission intensities, characteristic of the Er3+-ion intracenter 4f transition with \u03bb = 1535 nm when doping crystalline ZnO films with three rare-earth ions (REIs, Ce, Yb, Er) or with two impurities (Ce, Er) or (Er, Yb), independently of the measurement temperature (T = 83 and 300 K). The doping of crystalline ZnO films with rare-earth impurities (Ce, Yb, Er) leads to the efficient transfer of energy to REIs, a consequence of which is the intense emission of an Er3+ ion in the IR spectral region at \u03bbmax = 1535 nm. The kick-out diffusion mechanism is used upon the sequential introduction of impurities into semiconductor matrices and during the postgrowth annealing of the ZnO films under study. The crystalline ZnO films doped with Ce, Yb, Er also exhibit intense emission in the visible spectral region at room temperature, which makes them promising materials for optoelectronics.",
"genre": "article",
"id": "sg:pub.10.1134/s1063782615080138",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136692",
"issn": [
"1063-7826",
"1090-6479"
],
"name": "Semiconductors",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "8",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "49"
}
],
"keywords": [
"crystalline ZnO films",
"ZnO films",
"magnetron sputtering",
"promising material",
"postgrowth annealing",
"semiconductor matrix",
"films",
"measurement temperature",
"excitation type",
"emission intensity",
"diffusion mechanism",
"room temperature",
"spectral region",
"visible spectral region",
"IR spectral region",
"photoluminescence spectra",
"impurities",
"intense emission",
"temperature",
"non-resonant excitation",
"sputtering",
"emission",
"annealing",
"optoelectronics",
"doping",
"efficient transfer",
"resonant excitation",
"resonant",
"excitation",
"rare earth ions",
"materials",
"crystalline",
"diffusion",
"energy",
"matrix",
"rare earth impurities",
"ions",
"Ce",
"transfer",
"intensity",
"region",
"REIS",
"lines",
"transition",
"kick",
"effect",
"spectra",
"mechanism",
"types",
"introduction",
"rise",
"sequential introduction",
"ER",
"cases",
"study",
"\u03bbmax",
"consequences"
],
"name": "Emission intensity of the \u03bb = 1.54 \u03bcm line in ZnO films grown by magnetron sputtering, diffusion doped with Ce, Yb, Er",
"pagination": "992-999",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1053666327"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s1063782615080138"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s1063782615080138",
"https://app.dimensions.ai/details/publication/pub.1053666327"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:31",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_678.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s1063782615080138"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782615080138'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782615080138'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782615080138'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782615080138'
This table displays all metadata directly associated to this object as RDF triples.
163 TRIPLES
22 PREDICATES
86 URIs
74 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s1063782615080138 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0204 |
3 | ″ | ″ | anzsrc-for:0206 |
4 | ″ | schema:author | Na8c32af302834a0b8a37827f583bb537 |
5 | ″ | schema:citation | sg:pub.10.1007/s11664-006-0258-y |
6 | ″ | ″ | sg:pub.10.1134/s1063782612070135 |
7 | ″ | ″ | sg:pub.10.1134/s1063783412060248 |
8 | ″ | schema:datePublished | 2015-08-02 |
9 | ″ | schema:datePublishedReg | 2015-08-02 |
10 | ″ | schema:description | The effect of the Er3+-ion excitation type on the photoluminescence spectra of crystalline ZnO(ZnO〈Ce, Yb, Er〉) films is determined in the cases of resonant (λ = 532 nm, Er3+-ion transition from 4S3/2, 2H11/2 levels to 4I15/2) and non-resonant (λ = 325 nm, in the region near the ZnO band-edge emission) excitation. It is shown that resonant excitation gives rise to lines with various emission intensities, characteristic of the Er3+-ion intracenter 4f transition with λ = 1535 nm when doping crystalline ZnO films with three rare-earth ions (REIs, Ce, Yb, Er) or with two impurities (Ce, Er) or (Er, Yb), independently of the measurement temperature (T = 83 and 300 K). The doping of crystalline ZnO films with rare-earth impurities (Ce, Yb, Er) leads to the efficient transfer of energy to REIs, a consequence of which is the intense emission of an Er3+ ion in the IR spectral region at λmax = 1535 nm. The kick-out diffusion mechanism is used upon the sequential introduction of impurities into semiconductor matrices and during the postgrowth annealing of the ZnO films under study. The crystalline ZnO films doped with Ce, Yb, Er also exhibit intense emission in the visible spectral region at room temperature, which makes them promising materials for optoelectronics. |
11 | ″ | schema:genre | article |
12 | ″ | schema:inLanguage | en |
13 | ″ | schema:isAccessibleForFree | false |
14 | ″ | schema:isPartOf | N2e93e58a8fef4112a24b3658c8edb028 |
15 | ″ | ″ | N507e3cbca2e24f95a3f485a1c7faf6cf |
16 | ″ | ″ | sg:journal.1136692 |
17 | ″ | schema:keywords | Ce |
18 | ″ | ″ | ER |
19 | ″ | ″ | IR spectral region |
20 | ″ | ″ | REIS |
21 | ″ | ″ | ZnO films |
22 | ″ | ″ | annealing |
23 | ″ | ″ | cases |
24 | ″ | ″ | consequences |
25 | ″ | ″ | crystalline |
26 | ″ | ″ | crystalline ZnO films |
27 | ″ | ″ | diffusion |
28 | ″ | ″ | diffusion mechanism |
29 | ″ | ″ | doping |
30 | ″ | ″ | effect |
31 | ″ | ″ | efficient transfer |
32 | ″ | ″ | emission |
33 | ″ | ″ | emission intensity |
34 | ″ | ″ | energy |
35 | ″ | ″ | excitation |
36 | ″ | ″ | excitation type |
37 | ″ | ″ | films |
38 | ″ | ″ | impurities |
39 | ″ | ″ | intense emission |
40 | ″ | ″ | intensity |
41 | ″ | ″ | introduction |
42 | ″ | ″ | ions |
43 | ″ | ″ | kick |
44 | ″ | ″ | lines |
45 | ″ | ″ | magnetron sputtering |
46 | ″ | ″ | materials |
47 | ″ | ″ | matrix |
48 | ″ | ″ | measurement temperature |
49 | ″ | ″ | mechanism |
50 | ″ | ″ | non-resonant excitation |
51 | ″ | ″ | optoelectronics |
52 | ″ | ″ | photoluminescence spectra |
53 | ″ | ″ | postgrowth annealing |
54 | ″ | ″ | promising material |
55 | ″ | ″ | rare earth impurities |
56 | ″ | ″ | rare earth ions |
57 | ″ | ″ | region |
58 | ″ | ″ | resonant |
59 | ″ | ″ | resonant excitation |
60 | ″ | ″ | rise |
61 | ″ | ″ | room temperature |
62 | ″ | ″ | semiconductor matrix |
63 | ″ | ″ | sequential introduction |
64 | ″ | ″ | spectra |
65 | ″ | ″ | spectral region |
66 | ″ | ″ | sputtering |
67 | ″ | ″ | study |
68 | ″ | ″ | temperature |
69 | ″ | ″ | transfer |
70 | ″ | ″ | transition |
71 | ″ | ″ | types |
72 | ″ | ″ | visible spectral region |
73 | ″ | ″ | λmax |
74 | ″ | schema:name | Emission intensity of the λ = 1.54 μm line in ZnO films grown by magnetron sputtering, diffusion doped with Ce, Yb, Er |
75 | ″ | schema:pagination | 992-999 |
76 | ″ | schema:productId | N7b8077f10d2643b89f5d5206413d0d2c |
77 | ″ | ″ | Nff604781fcf444688af080dbd448f8e1 |
78 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1053666327 |
79 | ″ | ″ | https://doi.org/10.1134/s1063782615080138 |
80 | ″ | schema:sdDatePublished | 2022-05-20T07:31 |
81 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
82 | ″ | schema:sdPublisher | Ne145079d02994910bf3af5e5d4950a11 |
83 | ″ | schema:url | https://doi.org/10.1134/s1063782615080138 |
84 | ″ | sgo:license | sg:explorer/license/ |
85 | ″ | sgo:sdDataset | articles |
86 | ″ | rdf:type | schema:ScholarlyArticle |
87 | N2e93e58a8fef4112a24b3658c8edb028 | schema:volumeNumber | 49 |
88 | ″ | rdf:type | schema:PublicationVolume |
89 | N507e3cbca2e24f95a3f485a1c7faf6cf | schema:issueNumber | 8 |
90 | ″ | rdf:type | schema:PublicationIssue |
91 | N77582651e21343e1ace76c4f01690e71 | rdf:first | sg:person.010547461051.73 |
92 | ″ | rdf:rest | Na445f45683a14c7695ddea313f23fc0b |
93 | N7b8077f10d2643b89f5d5206413d0d2c | schema:name | dimensions_id |
94 | ″ | schema:value | pub.1053666327 |
95 | ″ | rdf:type | schema:PropertyValue |
96 | Na445f45683a14c7695ddea313f23fc0b | rdf:first | sg:person.016615421175.12 |
97 | ″ | rdf:rest | rdf:nil |
98 | Na8c32af302834a0b8a37827f583bb537 | rdf:first | sg:person.014240764435.25 |
99 | ″ | rdf:rest | Nab8013c336f241e2acbcccb4f0a001fb |
100 | Nab8013c336f241e2acbcccb4f0a001fb | rdf:first | sg:person.010725035161.80 |
101 | ″ | rdf:rest | Ne03194fa25a84122b86386412e25e881 |
102 | Ne03194fa25a84122b86386412e25e881 | rdf:first | sg:person.014243650571.24 |
103 | ″ | rdf:rest | N77582651e21343e1ace76c4f01690e71 |
104 | Ne145079d02994910bf3af5e5d4950a11 | schema:name | Springer Nature - SN SciGraph project |
105 | ″ | rdf:type | schema:Organization |
106 | Nff604781fcf444688af080dbd448f8e1 | schema:name | doi |
107 | ″ | schema:value | 10.1134/s1063782615080138 |
108 | ″ | rdf:type | schema:PropertyValue |
109 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
110 | ″ | schema:name | Physical Sciences |
111 | ″ | rdf:type | schema:DefinedTerm |
112 | anzsrc-for:0204 | schema:inDefinedTermSet | anzsrc-for: |
113 | ″ | schema:name | Condensed Matter Physics |
114 | ″ | rdf:type | schema:DefinedTerm |
115 | anzsrc-for:0206 | schema:inDefinedTermSet | anzsrc-for: |
116 | ″ | schema:name | Quantum Physics |
117 | ″ | rdf:type | schema:DefinedTerm |
118 | sg:journal.1136692 | schema:issn | 1063-7826 |
119 | ″ | ″ | 1090-6479 |
120 | ″ | schema:name | Semiconductors |
121 | ″ | schema:publisher | Pleiades Publishing |
122 | ″ | rdf:type | schema:Periodical |
123 | sg:person.010547461051.73 | schema:affiliation | grid-institutes:grid.423485.c |
124 | ″ | schema:familyName | Petrov |
125 | ″ | schema:givenName | V. N. |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010547461051.73 |
127 | ″ | rdf:type | schema:Person |
128 | sg:person.010725035161.80 | schema:affiliation | grid-institutes:grid.423485.c |
129 | ″ | schema:familyName | Eremenko |
130 | ″ | schema:givenName | M. V. |
131 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010725035161.80 |
132 | ″ | rdf:type | schema:Person |
133 | sg:person.014240764435.25 | schema:affiliation | grid-institutes:grid.423485.c |
134 | ″ | schema:familyName | Mezdrogina |
135 | ″ | schema:givenName | M. M. |
136 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014240764435.25 |
137 | ″ | rdf:type | schema:Person |
138 | sg:person.014243650571.24 | schema:affiliation | grid-institutes:grid.423485.c |
139 | ″ | schema:familyName | Smirnov |
140 | ″ | schema:givenName | A. N. |
141 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014243650571.24 |
142 | ″ | rdf:type | schema:Person |
143 | sg:person.016615421175.12 | schema:affiliation | grid-institutes:grid.9905.5 |
144 | ″ | schema:familyName | Terukov |
145 | ″ | schema:givenName | E. I. |
146 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016615421175.12 |
147 | ″ | rdf:type | schema:Person |
148 | sg:pub.10.1007/s11664-006-0258-y | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1033260240 |
149 | ″ | ″ | https://doi.org/10.1007/s11664-006-0258-y |
150 | ″ | rdf:type | schema:CreativeWork |
151 | sg:pub.10.1134/s1063782612070135 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1032082329 |
152 | ″ | ″ | https://doi.org/10.1134/s1063782612070135 |
153 | ″ | rdf:type | schema:CreativeWork |
154 | sg:pub.10.1134/s1063783412060248 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1038872603 |
155 | ″ | ″ | https://doi.org/10.1134/s1063783412060248 |
156 | ″ | rdf:type | schema:CreativeWork |
157 | grid-institutes:grid.423485.c | schema:alternateName | Ioffe Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia |
158 | ″ | schema:name | Ioffe Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia |
159 | ″ | rdf:type | schema:Organization |
160 | grid-institutes:grid.9905.5 | schema:alternateName | Saint Petersburg Electrotechnical University “LETI”, ul. Prof. Popova 5, 197376, St. Petersburg, Russia |
161 | ″ | schema:name | Ioffe Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia |
162 | ″ | ″ | Saint Petersburg Electrotechnical University “LETI”, ul. Prof. Popova 5, 197376, St. Petersburg, Russia |
163 | ″ | rdf:type | schema:Organization |