Ontology type: schema:ScholarlyArticle
2015-05-06
AUTHORSM. A. Mintairov, V. V. Evstropov, S. A. Mintairov, M. Z. Shvarts, N. Kh. Timoshina, N. A. Kalyuzhnyy
ABSTRACTA method is proposed for estimating the potential efficiency which can be achieved in an initially unbalanced multijunction solar cell by the mutual convergence of photogenerated currents: to extract this current from a relatively narrow band-gap cell and to add it to a relatively wide-gap cell. It is already known that the properties facilitating relative convergence are inherent to such objects as bound excitons, quantum dots, donor-acceptor pairs, and others located in relatively wide-gap cells. In fact, the proposed method is reduced to the problem of obtaining such a required light current-voltage (I–V) characteristic which corresponds to the equality of all photogenerated short-circuit currents. Two methods for obtaining the required light I–V characteristic are used. The first one is selection of the spectral composition of the radiation incident on the multijunction solar cell from an illuminator. The second method is a double shift of the dark I–V characteristic: a current shift Jg (common set photogenerated current) and a voltage shift (−JgRs), where Rs is the series resistance. For the light and dark I–V characteristics, a general analytical expression is derived, which considers the effect of so-called luminescence coupling in multijunction solar cells. The experimental I–V characteristics are compared with the calculated ones for a three-junction InGaP/GaAs/Ge solar cell with Rs = 0.019 Ω cm2 and a maximum factual efficiency of 36.9%. Its maximum potential efficiency is estimated as 41.2%. More... »
PAGES668-673
http://scigraph.springernature.com/pub.10.1134/s1063782615050164
DOIhttp://dx.doi.org/10.1134/s1063782615050164
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1017318343
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Condensed Matter Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Quantum Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Ioffe Physical-Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physical-Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Mintairov",
"givenName": "M. A.",
"id": "sg:person.013224043671.45",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013224043671.45"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physical-Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physical-Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Evstropov",
"givenName": "V. V.",
"id": "sg:person.013245131377.70",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013245131377.70"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physical-Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physical-Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Mintairov",
"givenName": "S. A.",
"id": "sg:person.07536566153.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07536566153.48"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physical-Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physical-Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Shvarts",
"givenName": "M. Z.",
"id": "sg:person.016332220465.73",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016332220465.73"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physical-Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physical-Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Timoshina",
"givenName": "N. Kh.",
"id": "sg:person.013705471175.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013705471175.43"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physical-Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physical-Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Kalyuzhnyy",
"givenName": "N. A.",
"id": "sg:person.014537453054.16",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014537453054.16"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1134/s1063782609040204",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040830840",
"https://doi.org/10.1134/s1063782609040204"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s1063782612080143",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020298766",
"https://doi.org/10.1134/s1063782612080143"
],
"type": "CreativeWork"
}
],
"datePublished": "2015-05-06",
"datePublishedReg": "2015-05-06",
"description": "A method is proposed for estimating the potential efficiency which can be achieved in an initially unbalanced multijunction solar cell by the mutual convergence of photogenerated currents: to extract this current from a relatively narrow band-gap cell and to add it to a relatively wide-gap cell. It is already known that the properties facilitating relative convergence are inherent to such objects as bound excitons, quantum dots, donor-acceptor pairs, and others located in relatively wide-gap cells. In fact, the proposed method is reduced to the problem of obtaining such a required light current-voltage (I\u2013V) characteristic which corresponds to the equality of all photogenerated short-circuit currents. Two methods for obtaining the required light I\u2013V characteristic are used. The first one is selection of the spectral composition of the radiation incident on the multijunction solar cell from an illuminator. The second method is a double shift of the dark I\u2013V characteristic: a current shift Jg (common set photogenerated current) and a voltage shift (\u2212JgRs), where Rs is the series resistance. For the light and dark I\u2013V characteristics, a general analytical expression is derived, which considers the effect of so-called luminescence coupling in multijunction solar cells. The experimental I\u2013V characteristics are compared with the calculated ones for a three-junction InGaP/GaAs/Ge solar cell with Rs = 0.019 \u03a9 cm2 and a maximum factual efficiency of 36.9%. Its maximum potential efficiency is estimated as 41.2%.",
"genre": "article",
"id": "sg:pub.10.1134/s1063782615050164",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136692",
"issn": [
"1063-7826",
"1090-6479"
],
"name": "Semiconductors",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "5",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "49"
}
],
"keywords": [
"multijunction solar cells",
"solar cells",
"InGaP/GaAs/Ge solar cells",
"GaAs/Ge solar cells",
"light current-voltage characteristics",
"Ge solar cells",
"band gap cells",
"current-voltage characteristics",
"luminescence coupling",
"short-circuit current",
"series resistance",
"voltage shift",
"potential efficiency",
"light I",
"current",
"maximum potential efficiency",
"analytical expressions",
"efficiency",
"radiation incident",
"second method",
"general analytical expression",
"quantum dots",
"characteristics",
"first one",
"cm2",
"method",
"illuminator",
"properties",
"such objects",
"spectral composition",
"estimation",
"JG",
"donor-acceptor pairs",
"resistance",
"mutual convergence",
"convergence",
"dots",
"coupling",
"one",
"excitons",
"composition",
"problem",
"shift",
"RS",
"effect",
"balance",
"relative convergence",
"objects",
"light",
"incidents",
"selection",
"double shift",
"Rs",
"pairs",
"cells",
"fact",
"equality",
"expression"
],
"name": "Estimation of the potential efficiency of a multijunction solar cell at a limit balance of photogenerated currents",
"pagination": "668-673",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1017318343"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s1063782615050164"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s1063782615050164",
"https://app.dimensions.ai/details/publication/pub.1017318343"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:30",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_650.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s1063782615050164"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782615050164'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782615050164'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782615050164'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782615050164'
This table displays all metadata directly associated to this object as RDF triples.
163 TRIPLES
22 PREDICATES
86 URIs
75 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s1063782615050164 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0204 |
3 | ″ | ″ | anzsrc-for:0206 |
4 | ″ | schema:author | N983ac4370ba24b6d8a0ec66c7ff12bd8 |
5 | ″ | schema:citation | sg:pub.10.1134/s1063782609040204 |
6 | ″ | ″ | sg:pub.10.1134/s1063782612080143 |
7 | ″ | schema:datePublished | 2015-05-06 |
8 | ″ | schema:datePublishedReg | 2015-05-06 |
9 | ″ | schema:description | A method is proposed for estimating the potential efficiency which can be achieved in an initially unbalanced multijunction solar cell by the mutual convergence of photogenerated currents: to extract this current from a relatively narrow band-gap cell and to add it to a relatively wide-gap cell. It is already known that the properties facilitating relative convergence are inherent to such objects as bound excitons, quantum dots, donor-acceptor pairs, and others located in relatively wide-gap cells. In fact, the proposed method is reduced to the problem of obtaining such a required light current-voltage (I–V) characteristic which corresponds to the equality of all photogenerated short-circuit currents. Two methods for obtaining the required light I–V characteristic are used. The first one is selection of the spectral composition of the radiation incident on the multijunction solar cell from an illuminator. The second method is a double shift of the dark I–V characteristic: a current shift Jg (common set photogenerated current) and a voltage shift (−JgRs), where Rs is the series resistance. For the light and dark I–V characteristics, a general analytical expression is derived, which considers the effect of so-called luminescence coupling in multijunction solar cells. The experimental I–V characteristics are compared with the calculated ones for a three-junction InGaP/GaAs/Ge solar cell with Rs = 0.019 Ω cm2 and a maximum factual efficiency of 36.9%. Its maximum potential efficiency is estimated as 41.2%. |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N3c8d9e781e5043448507ac79409d8085 |
14 | ″ | ″ | N9f0a4647e8564e18a739cfb251ae3403 |
15 | ″ | ″ | sg:journal.1136692 |
16 | ″ | schema:keywords | GaAs/Ge solar cells |
17 | ″ | ″ | Ge solar cells |
18 | ″ | ″ | InGaP/GaAs/Ge solar cells |
19 | ″ | ″ | JG |
20 | ″ | ″ | RS |
21 | ″ | ″ | Rs |
22 | ″ | ″ | analytical expressions |
23 | ″ | ″ | balance |
24 | ″ | ″ | band gap cells |
25 | ″ | ″ | cells |
26 | ″ | ″ | characteristics |
27 | ″ | ″ | cm2 |
28 | ″ | ″ | composition |
29 | ″ | ″ | convergence |
30 | ″ | ″ | coupling |
31 | ″ | ″ | current |
32 | ″ | ″ | current-voltage characteristics |
33 | ″ | ″ | donor-acceptor pairs |
34 | ″ | ″ | dots |
35 | ″ | ″ | double shift |
36 | ″ | ″ | effect |
37 | ″ | ″ | efficiency |
38 | ″ | ″ | equality |
39 | ″ | ″ | estimation |
40 | ″ | ″ | excitons |
41 | ″ | ″ | expression |
42 | ″ | ″ | fact |
43 | ″ | ″ | first one |
44 | ″ | ″ | general analytical expression |
45 | ″ | ″ | illuminator |
46 | ″ | ″ | incidents |
47 | ″ | ″ | light |
48 | ″ | ″ | light I |
49 | ″ | ″ | light current-voltage characteristics |
50 | ″ | ″ | luminescence coupling |
51 | ″ | ″ | maximum potential efficiency |
52 | ″ | ″ | method |
53 | ″ | ″ | multijunction solar cells |
54 | ″ | ″ | mutual convergence |
55 | ″ | ″ | objects |
56 | ″ | ″ | one |
57 | ″ | ″ | pairs |
58 | ″ | ″ | potential efficiency |
59 | ″ | ″ | problem |
60 | ″ | ″ | properties |
61 | ″ | ″ | quantum dots |
62 | ″ | ″ | radiation incident |
63 | ″ | ″ | relative convergence |
64 | ″ | ″ | resistance |
65 | ″ | ″ | second method |
66 | ″ | ″ | selection |
67 | ″ | ″ | series resistance |
68 | ″ | ″ | shift |
69 | ″ | ″ | short-circuit current |
70 | ″ | ″ | solar cells |
71 | ″ | ″ | spectral composition |
72 | ″ | ″ | such objects |
73 | ″ | ″ | voltage shift |
74 | ″ | schema:name | Estimation of the potential efficiency of a multijunction solar cell at a limit balance of photogenerated currents |
75 | ″ | schema:pagination | 668-673 |
76 | ″ | schema:productId | N951139e221884d17a8a38472f6db3271 |
77 | ″ | ″ | Naba7df77337a4444924e64e58b0b1cb3 |
78 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1017318343 |
79 | ″ | ″ | https://doi.org/10.1134/s1063782615050164 |
80 | ″ | schema:sdDatePublished | 2022-05-20T07:30 |
81 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
82 | ″ | schema:sdPublisher | N38cb96d375694dcc886e4288f0ca7fb1 |
83 | ″ | schema:url | https://doi.org/10.1134/s1063782615050164 |
84 | ″ | sgo:license | sg:explorer/license/ |
85 | ″ | sgo:sdDataset | articles |
86 | ″ | rdf:type | schema:ScholarlyArticle |
87 | N0315dccce7bf48edb171cfa3cae6dda7 | rdf:first | sg:person.016332220465.73 |
88 | ″ | rdf:rest | Ne7f6049b4ad64465acdbc34bc2fbf18c |
89 | N2c5007f9e2614995839599326eef12dc | rdf:first | sg:person.014537453054.16 |
90 | ″ | rdf:rest | rdf:nil |
91 | N38cb96d375694dcc886e4288f0ca7fb1 | schema:name | Springer Nature - SN SciGraph project |
92 | ″ | rdf:type | schema:Organization |
93 | N3c8d9e781e5043448507ac79409d8085 | schema:issueNumber | 5 |
94 | ″ | rdf:type | schema:PublicationIssue |
95 | N3d82029d08d94670b71d8d5c40ca4fd1 | rdf:first | sg:person.013245131377.70 |
96 | ″ | rdf:rest | Ne76e9f493e2a4b81853f85bd88db8c2b |
97 | N951139e221884d17a8a38472f6db3271 | schema:name | dimensions_id |
98 | ″ | schema:value | pub.1017318343 |
99 | ″ | rdf:type | schema:PropertyValue |
100 | N983ac4370ba24b6d8a0ec66c7ff12bd8 | rdf:first | sg:person.013224043671.45 |
101 | ″ | rdf:rest | N3d82029d08d94670b71d8d5c40ca4fd1 |
102 | N9f0a4647e8564e18a739cfb251ae3403 | schema:volumeNumber | 49 |
103 | ″ | rdf:type | schema:PublicationVolume |
104 | Naba7df77337a4444924e64e58b0b1cb3 | schema:name | doi |
105 | ″ | schema:value | 10.1134/s1063782615050164 |
106 | ″ | rdf:type | schema:PropertyValue |
107 | Ne76e9f493e2a4b81853f85bd88db8c2b | rdf:first | sg:person.07536566153.48 |
108 | ″ | rdf:rest | N0315dccce7bf48edb171cfa3cae6dda7 |
109 | Ne7f6049b4ad64465acdbc34bc2fbf18c | rdf:first | sg:person.013705471175.43 |
110 | ″ | rdf:rest | N2c5007f9e2614995839599326eef12dc |
111 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
112 | ″ | schema:name | Physical Sciences |
113 | ″ | rdf:type | schema:DefinedTerm |
114 | anzsrc-for:0204 | schema:inDefinedTermSet | anzsrc-for: |
115 | ″ | schema:name | Condensed Matter Physics |
116 | ″ | rdf:type | schema:DefinedTerm |
117 | anzsrc-for:0206 | schema:inDefinedTermSet | anzsrc-for: |
118 | ″ | schema:name | Quantum Physics |
119 | ″ | rdf:type | schema:DefinedTerm |
120 | sg:journal.1136692 | schema:issn | 1063-7826 |
121 | ″ | ″ | 1090-6479 |
122 | ″ | schema:name | Semiconductors |
123 | ″ | schema:publisher | Pleiades Publishing |
124 | ″ | rdf:type | schema:Periodical |
125 | sg:person.013224043671.45 | schema:affiliation | grid-institutes:grid.423485.c |
126 | ″ | schema:familyName | Mintairov |
127 | ″ | schema:givenName | M. A. |
128 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013224043671.45 |
129 | ″ | rdf:type | schema:Person |
130 | sg:person.013245131377.70 | schema:affiliation | grid-institutes:grid.423485.c |
131 | ″ | schema:familyName | Evstropov |
132 | ″ | schema:givenName | V. V. |
133 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013245131377.70 |
134 | ″ | rdf:type | schema:Person |
135 | sg:person.013705471175.43 | schema:affiliation | grid-institutes:grid.423485.c |
136 | ″ | schema:familyName | Timoshina |
137 | ″ | schema:givenName | N. Kh. |
138 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013705471175.43 |
139 | ″ | rdf:type | schema:Person |
140 | sg:person.014537453054.16 | schema:affiliation | grid-institutes:grid.423485.c |
141 | ″ | schema:familyName | Kalyuzhnyy |
142 | ″ | schema:givenName | N. A. |
143 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014537453054.16 |
144 | ″ | rdf:type | schema:Person |
145 | sg:person.016332220465.73 | schema:affiliation | grid-institutes:grid.423485.c |
146 | ″ | schema:familyName | Shvarts |
147 | ″ | schema:givenName | M. Z. |
148 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016332220465.73 |
149 | ″ | rdf:type | schema:Person |
150 | sg:person.07536566153.48 | schema:affiliation | grid-institutes:grid.423485.c |
151 | ″ | schema:familyName | Mintairov |
152 | ″ | schema:givenName | S. A. |
153 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07536566153.48 |
154 | ″ | rdf:type | schema:Person |
155 | sg:pub.10.1134/s1063782609040204 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040830840 |
156 | ″ | ″ | https://doi.org/10.1134/s1063782609040204 |
157 | ″ | rdf:type | schema:CreativeWork |
158 | sg:pub.10.1134/s1063782612080143 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1020298766 |
159 | ″ | ″ | https://doi.org/10.1134/s1063782612080143 |
160 | ″ | rdf:type | schema:CreativeWork |
161 | grid-institutes:grid.423485.c | schema:alternateName | Ioffe Physical-Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia |
162 | ″ | schema:name | Ioffe Physical-Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia |
163 | ″ | rdf:type | schema:Organization |