Optical studies of carriers’ vertical transport in the alternately-strained ZnS0.4Se0.6/CdSe superlattice View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-03-04

AUTHORS

E. A. Evropeytsev, S. V. Sorokin, S. V. Gronin, I. V. Sedova, G. V. Klimko, S. V. Ivanov, A. A. Toropov

ABSTRACT

We present the results of theoretical modelling and experimental optical studies of the alternatively-strained CdSe/ZnSySe1 − y (y = 0.4) superlattice (SL) with effective band-gap Egeff ∼ 2.580 eV and a thickness of ∼300 nm, which was grown by molecular-beam epitaxy on a GaAs substrate. The thicknesses and composition of the layers of the superlattice are determined on the basis of the SL minibands parameters calculated implying both full lattice matching of the SL as a whole to a GaAs substrate and high efficiency of photoexcited carriers transport along the growth axis. Photoluminescence studies of the transport properties of the structure (including a superlattice with one enlarged quantum well) show that the characteristic time of the diffusion of charge carriers at 300 K is shorter than the times defined by recombination processes. Such superlattices seem to be promising for the formation of a wide-gap photoactive region in a multijunction solar cell, which includes both III–V and II–VI compounds. More... »

PAGES

352-357

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782615030070

DOI

http://dx.doi.org/10.1134/s1063782615030070

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047866044


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Evropeytsev", 
        "givenName": "E. A.", 
        "id": "sg:person.013203266151.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013203266151.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sorokin", 
        "givenName": "S. V.", 
        "id": "sg:person.012454020751.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012454020751.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gronin", 
        "givenName": "S. V.", 
        "id": "sg:person.011121504665.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011121504665.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sedova", 
        "givenName": "I. V.", 
        "id": "sg:person.014533010336.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014533010336.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klimko", 
        "givenName": "G. V.", 
        "id": "sg:person.013335174157.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013335174157.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ivanov", 
        "givenName": "S. V.", 
        "id": "sg:person.01064304443.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064304443.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toropov", 
        "givenName": "A. A.", 
        "id": "sg:person.014125142357.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014125142357.87"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015-03-04", 
    "datePublishedReg": "2015-03-04", 
    "description": "We present the results of theoretical modelling and experimental optical studies of the alternatively-strained CdSe/ZnSySe1 \u2212 y (y = 0.4) superlattice (SL) with effective band-gap Egeff \u223c 2.580 eV and a thickness of \u223c300 nm, which was grown by molecular-beam epitaxy on a GaAs substrate. The thicknesses and composition of the layers of the superlattice are determined on the basis of the SL minibands parameters calculated implying both full lattice matching of the SL as a whole to a GaAs substrate and high efficiency of photoexcited carriers transport along the growth axis. Photoluminescence studies of the transport properties of the structure (including a superlattice with one enlarged quantum well) show that the characteristic time of the diffusion of charge carriers at 300 K is shorter than the times defined by recombination processes. Such superlattices seem to be promising for the formation of a wide-gap photoactive region in a multijunction solar cell, which includes both III\u2013V and II\u2013VI compounds.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063782615030070", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "keywords": [
      "optical studies", 
      "GaAs substrates", 
      "molecular-beam epitaxy", 
      "such superlattices", 
      "multijunction solar cells", 
      "superlattices", 
      "photoactive region", 
      "recombination process", 
      "charge carriers", 
      "photoluminescence studies", 
      "growth axis", 
      "theoretical modelling", 
      "characteristic time", 
      "transport properties", 
      "lattice matching", 
      "solar cells", 
      "epitaxy", 
      "vertical transport", 
      "carriers", 
      "thickness", 
      "substrate", 
      "high efficiency", 
      "layer", 
      "axis", 
      "diffusion", 
      "properties", 
      "structure", 
      "transport", 
      "formation", 
      "region", 
      "parameters", 
      "efficiency", 
      "time", 
      "composition", 
      "process", 
      "results", 
      "matching", 
      "modelling", 
      "compounds", 
      "basis", 
      "study", 
      "whole", 
      "cells", 
      "experimental optical studies", 
      "strained CdSe/ZnSySe1", 
      "CdSe/ZnSySe1", 
      "ZnSySe1", 
      "effective band-gap Egeff", 
      "band-gap Egeff", 
      "Egeff", 
      "full lattice matching", 
      "wide-gap photoactive region", 
      "CdSe superlattice"
    ], 
    "name": "Optical studies of carriers\u2019 vertical transport in the alternately-strained ZnS0.4Se0.6/CdSe superlattice", 
    "pagination": "352-357", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047866044"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782615030070"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782615030070", 
      "https://app.dimensions.ai/details/publication/pub.1047866044"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_677.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063782615030070"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782615030070'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782615030070'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782615030070'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782615030070'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      21 PREDICATES      79 URIs      70 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782615030070 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 anzsrc-for:0206
4 schema:author N8316c2ee2406459ba82591a114dc6af1
5 schema:datePublished 2015-03-04
6 schema:datePublishedReg 2015-03-04
7 schema:description We present the results of theoretical modelling and experimental optical studies of the alternatively-strained CdSe/ZnSySe1 − y (y = 0.4) superlattice (SL) with effective band-gap Egeff ∼ 2.580 eV and a thickness of ∼300 nm, which was grown by molecular-beam epitaxy on a GaAs substrate. The thicknesses and composition of the layers of the superlattice are determined on the basis of the SL minibands parameters calculated implying both full lattice matching of the SL as a whole to a GaAs substrate and high efficiency of photoexcited carriers transport along the growth axis. Photoluminescence studies of the transport properties of the structure (including a superlattice with one enlarged quantum well) show that the characteristic time of the diffusion of charge carriers at 300 K is shorter than the times defined by recombination processes. Such superlattices seem to be promising for the formation of a wide-gap photoactive region in a multijunction solar cell, which includes both III–V and II–VI compounds.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N866f0a7390204127bde0bd549c67b90a
12 Nc3675dd23c1f47c7a6d64e8d6c199b6d
13 sg:journal.1136692
14 schema:keywords CdSe superlattice
15 CdSe/ZnSySe1
16 Egeff
17 GaAs substrates
18 ZnSySe1
19 axis
20 band-gap Egeff
21 basis
22 carriers
23 cells
24 characteristic time
25 charge carriers
26 composition
27 compounds
28 diffusion
29 effective band-gap Egeff
30 efficiency
31 epitaxy
32 experimental optical studies
33 formation
34 full lattice matching
35 growth axis
36 high efficiency
37 lattice matching
38 layer
39 matching
40 modelling
41 molecular-beam epitaxy
42 multijunction solar cells
43 optical studies
44 parameters
45 photoactive region
46 photoluminescence studies
47 process
48 properties
49 recombination process
50 region
51 results
52 solar cells
53 strained CdSe/ZnSySe1
54 structure
55 study
56 substrate
57 such superlattices
58 superlattices
59 theoretical modelling
60 thickness
61 time
62 transport
63 transport properties
64 vertical transport
65 whole
66 wide-gap photoactive region
67 schema:name Optical studies of carriers’ vertical transport in the alternately-strained ZnS0.4Se0.6/CdSe superlattice
68 schema:pagination 352-357
69 schema:productId N2e929f828ee04c23b3fba8f9f4516508
70 Nc6bc8caf090346a383724075864cae56
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047866044
72 https://doi.org/10.1134/s1063782615030070
73 schema:sdDatePublished 2022-01-01T18:37
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher Nfb32376f3ac442de9f77f07b7dc709f3
76 schema:url https://doi.org/10.1134/s1063782615030070
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N22b9e72d7fac4958ac0ab33b831de576 rdf:first sg:person.014533010336.56
81 rdf:rest Nfdc47561f5b641e7ba8727e34dbd836f
82 N2e929f828ee04c23b3fba8f9f4516508 schema:name dimensions_id
83 schema:value pub.1047866044
84 rdf:type schema:PropertyValue
85 N4842813ed49f444d90169df4f27406f7 rdf:first sg:person.011121504665.45
86 rdf:rest N22b9e72d7fac4958ac0ab33b831de576
87 N4f2cb073ff0141c38e148b786634478b rdf:first sg:person.01064304443.31
88 rdf:rest Nc87480c443a4416b85285d054eb56684
89 N79e578aa83d941739a9c0df532fc7995 rdf:first sg:person.012454020751.10
90 rdf:rest N4842813ed49f444d90169df4f27406f7
91 N8316c2ee2406459ba82591a114dc6af1 rdf:first sg:person.013203266151.03
92 rdf:rest N79e578aa83d941739a9c0df532fc7995
93 N866f0a7390204127bde0bd549c67b90a schema:issueNumber 3
94 rdf:type schema:PublicationIssue
95 Nc3675dd23c1f47c7a6d64e8d6c199b6d schema:volumeNumber 49
96 rdf:type schema:PublicationVolume
97 Nc6bc8caf090346a383724075864cae56 schema:name doi
98 schema:value 10.1134/s1063782615030070
99 rdf:type schema:PropertyValue
100 Nc87480c443a4416b85285d054eb56684 rdf:first sg:person.014125142357.87
101 rdf:rest rdf:nil
102 Nfb32376f3ac442de9f77f07b7dc709f3 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 Nfdc47561f5b641e7ba8727e34dbd836f rdf:first sg:person.013335174157.15
105 rdf:rest N4f2cb073ff0141c38e148b786634478b
106 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
107 schema:name Physical Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
110 schema:name Condensed Matter Physics
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
113 schema:name Quantum Physics
114 rdf:type schema:DefinedTerm
115 sg:journal.1136692 schema:issn 1063-7826
116 1090-6479
117 schema:name Semiconductors
118 schema:publisher Pleiades Publishing
119 rdf:type schema:Periodical
120 sg:person.01064304443.31 schema:affiliation grid-institutes:grid.423485.c
121 schema:familyName Ivanov
122 schema:givenName S. V.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064304443.31
124 rdf:type schema:Person
125 sg:person.011121504665.45 schema:affiliation grid-institutes:grid.423485.c
126 schema:familyName Gronin
127 schema:givenName S. V.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011121504665.45
129 rdf:type schema:Person
130 sg:person.012454020751.10 schema:affiliation grid-institutes:grid.423485.c
131 schema:familyName Sorokin
132 schema:givenName S. V.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012454020751.10
134 rdf:type schema:Person
135 sg:person.013203266151.03 schema:affiliation grid-institutes:grid.423485.c
136 schema:familyName Evropeytsev
137 schema:givenName E. A.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013203266151.03
139 rdf:type schema:Person
140 sg:person.013335174157.15 schema:affiliation grid-institutes:grid.423485.c
141 schema:familyName Klimko
142 schema:givenName G. V.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013335174157.15
144 rdf:type schema:Person
145 sg:person.014125142357.87 schema:affiliation grid-institutes:grid.423485.c
146 schema:familyName Toropov
147 schema:givenName A. A.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014125142357.87
149 rdf:type schema:Person
150 sg:person.014533010336.56 schema:affiliation grid-institutes:grid.423485.c
151 schema:familyName Sedova
152 schema:givenName I. V.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014533010336.56
154 rdf:type schema:Person
155 grid-institutes:grid.423485.c schema:alternateName Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
156 schema:name Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...