Effect of the photon lifetime on the characteristics of 850-nm vertical-cavity surface-emitting lasers with fully doped distributed Bragg reflectors and ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-12-02

AUTHORS

M. A. Bobrov, S. A. Blokhin, A. G. Kuzmenkov, N. A. Maleev, A. A. Blokhin, Yu. M. Zadiranov, E. V. Nikitina, V. M. Ustinov

ABSTRACT

The effect of the photon lifetime in an optical microcavity on the characteristics of 850-nm vertical-cavity surface-emitting lasers (VCSELs) with fully doped distributed Bragg reflectors (DBRs) and an oxide current aperture is studied. The photon lifetime in the microcavity is controlled by varying the upper DBR reflectance. It is found that the speed of VCSELs with a current-aperture diameter of 10 μm is mainly limited by the self-heating effect, despite an increase in the relaxation-oscillation damping coefficient with increasing photon lifetime in the microcavity. At the same time, the higher level of internal optical loss in lasers with a current-aperture diameter of 1.5 μm leads to dominance of the effect of relaxation-oscillation damping independently of the radiation output loss. In the case of devices with a current-aperture diameter of 5.5 μm, both mechanisms limiting the speed operate, which allow an increase in the VCSEL effective modulation frequency from 21 to 24 GHz as the photon lifetime decreases from 3.7 to 0.8 ps. More... »

PAGES

1657-1663

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782614120033

DOI

http://dx.doi.org/10.1134/s1063782614120033

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036859236


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Physical-Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bobrov", 
        "givenName": "M. A.", 
        "id": "sg:person.016652543020.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016652543020.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical-Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blokhin", 
        "givenName": "S. A.", 
        "id": "sg:person.015244136173.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015244136173.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Submicron Heterostructures for Microelectronics Research and Engineering Center, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.502986.0", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia", 
            "Submicron Heterostructures for Microelectronics Research and Engineering Center, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuzmenkov", 
        "givenName": "A. G.", 
        "id": "sg:person.013204674115.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013204674115.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical-Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maleev", 
        "givenName": "N. A.", 
        "id": "sg:person.011317077151.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011317077151.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saint Petersburg State Polytechnical University, ul. Politekhnicheskaya 29, 195251, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.32495.39", 
          "name": [
            "Saint Petersburg State Polytechnical University, ul. Politekhnicheskaya 29, 195251, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blokhin", 
        "givenName": "A. A.", 
        "id": "sg:person.07355752320.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07355752320.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical-Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zadiranov", 
        "givenName": "Yu. M.", 
        "id": "sg:person.014121041567.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121041567.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saint Petersburg Academic University\u2014Nanotechnology Research and Education Center, Russian Academy of Sciences, ul. Khlopina 8/3, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Saint Petersburg Academic University\u2014Nanotechnology Research and Education Center, Russian Academy of Sciences, ul. Khlopina 8/3, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikitina", 
        "givenName": "E. V.", 
        "id": "sg:person.012555247104.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012555247104.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical-Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ustinov", 
        "givenName": "V. M.", 
        "id": "sg:person.012211352412.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012211352412.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1063782613060055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045242673", 
          "https://doi.org/10.1134/s1063782613060055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063785012020101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023017572", 
          "https://doi.org/10.1134/s1063785012020101"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12-02", 
    "datePublishedReg": "2014-12-02", 
    "description": "The effect of the photon lifetime in an optical microcavity on the characteristics of 850-nm vertical-cavity surface-emitting lasers (VCSELs) with fully doped distributed Bragg reflectors (DBRs) and an oxide current aperture is studied. The photon lifetime in the microcavity is controlled by varying the upper DBR reflectance. It is found that the speed of VCSELs with a current-aperture diameter of 10 \u03bcm is mainly limited by the self-heating effect, despite an increase in the relaxation-oscillation damping coefficient with increasing photon lifetime in the microcavity. At the same time, the higher level of internal optical loss in lasers with a current-aperture diameter of 1.5 \u03bcm leads to dominance of the effect of relaxation-oscillation damping independently of the radiation output loss. In the case of devices with a current-aperture diameter of 5.5 \u03bcm, both mechanisms limiting the speed operate, which allow an increase in the VCSEL effective modulation frequency from 21 to 24 GHz as the photon lifetime decreases from 3.7 to 0.8 ps.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063782614120033", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "48"
      }
    ], 
    "keywords": [
      "vertical-cavity surface-emitting lasers", 
      "photon lifetime", 
      "surface-emitting lasers", 
      "current aperture", 
      "Bragg reflectors", 
      "internal optical loss", 
      "effective modulation frequency", 
      "optical microcavities", 
      "optical losses", 
      "self-heating effect", 
      "microcavities", 
      "modulation frequency", 
      "laser", 
      "case of devices", 
      "lifetime", 
      "aperture", 
      "reflector", 
      "ps", 
      "reflectance", 
      "GHz", 
      "devices", 
      "diameter", 
      "damping coefficient", 
      "frequency", 
      "effect", 
      "speed", 
      "coefficient", 
      "lead", 
      "same time", 
      "characteristics", 
      "loss", 
      "mechanism", 
      "time", 
      "increase", 
      "cases", 
      "output losses", 
      "levels", 
      "dominance", 
      "high levels", 
      "oxide current aperture", 
      "upper DBR reflectance", 
      "DBR reflectance", 
      "speed of VCSELs", 
      "current-aperture diameter", 
      "relaxation-oscillation damping coefficient", 
      "radiation output loss", 
      "VCSEL effective modulation frequency"
    ], 
    "name": "Effect of the photon lifetime on the characteristics of 850-nm vertical-cavity surface-emitting lasers with fully doped distributed Bragg reflectors and an oxide current aperture", 
    "pagination": "1657-1663", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036859236"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782614120033"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782614120033", 
      "https://app.dimensions.ai/details/publication/pub.1036859236"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_621.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063782614120033"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782614120033'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782614120033'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782614120033'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782614120033'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      22 PREDICATES      74 URIs      64 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782614120033 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nac64745847ac496596ce6bc17a25af25
4 schema:citation sg:pub.10.1134/s1063782613060055
5 sg:pub.10.1134/s1063785012020101
6 schema:datePublished 2014-12-02
7 schema:datePublishedReg 2014-12-02
8 schema:description The effect of the photon lifetime in an optical microcavity on the characteristics of 850-nm vertical-cavity surface-emitting lasers (VCSELs) with fully doped distributed Bragg reflectors (DBRs) and an oxide current aperture is studied. The photon lifetime in the microcavity is controlled by varying the upper DBR reflectance. It is found that the speed of VCSELs with a current-aperture diameter of 10 μm is mainly limited by the self-heating effect, despite an increase in the relaxation-oscillation damping coefficient with increasing photon lifetime in the microcavity. At the same time, the higher level of internal optical loss in lasers with a current-aperture diameter of 1.5 μm leads to dominance of the effect of relaxation-oscillation damping independently of the radiation output loss. In the case of devices with a current-aperture diameter of 5.5 μm, both mechanisms limiting the speed operate, which allow an increase in the VCSEL effective modulation frequency from 21 to 24 GHz as the photon lifetime decreases from 3.7 to 0.8 ps.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf Ncdc2ddd78f524440b618efcf19d470c1
13 Ne00db6c57d0b4b57bd2c53034075d1c2
14 sg:journal.1136692
15 schema:keywords Bragg reflectors
16 DBR reflectance
17 GHz
18 VCSEL effective modulation frequency
19 aperture
20 case of devices
21 cases
22 characteristics
23 coefficient
24 current aperture
25 current-aperture diameter
26 damping coefficient
27 devices
28 diameter
29 dominance
30 effect
31 effective modulation frequency
32 frequency
33 high levels
34 increase
35 internal optical loss
36 laser
37 lead
38 levels
39 lifetime
40 loss
41 mechanism
42 microcavities
43 modulation frequency
44 optical losses
45 optical microcavities
46 output losses
47 oxide current aperture
48 photon lifetime
49 ps
50 radiation output loss
51 reflectance
52 reflector
53 relaxation-oscillation damping coefficient
54 same time
55 self-heating effect
56 speed
57 speed of VCSELs
58 surface-emitting lasers
59 time
60 upper DBR reflectance
61 vertical-cavity surface-emitting lasers
62 schema:name Effect of the photon lifetime on the characteristics of 850-nm vertical-cavity surface-emitting lasers with fully doped distributed Bragg reflectors and an oxide current aperture
63 schema:pagination 1657-1663
64 schema:productId N5bb21d12a46748a9958a9a9b9dc2113b
65 N71b9cc7973124b12927fc8487baeeddb
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036859236
67 https://doi.org/10.1134/s1063782614120033
68 schema:sdDatePublished 2021-12-01T19:31
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N234e374e28114f86aab1e2f2458d463f
71 schema:url https://doi.org/10.1134/s1063782614120033
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N127a4e1ae179454cab3e0ece124df0c8 rdf:first sg:person.011317077151.34
76 rdf:rest N9fa2ad673baa4f27b0f4bba72c95c755
77 N1a8032911a2a4c67ba389ed4af840aa3 rdf:first sg:person.015244136173.28
78 rdf:rest N9c7e38e02b624db2b35ed20108a2f45d
79 N234e374e28114f86aab1e2f2458d463f schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N5bb21d12a46748a9958a9a9b9dc2113b schema:name dimensions_id
82 schema:value pub.1036859236
83 rdf:type schema:PropertyValue
84 N71b9cc7973124b12927fc8487baeeddb schema:name doi
85 schema:value 10.1134/s1063782614120033
86 rdf:type schema:PropertyValue
87 N9c7e38e02b624db2b35ed20108a2f45d rdf:first sg:person.013204674115.84
88 rdf:rest N127a4e1ae179454cab3e0ece124df0c8
89 N9fa2ad673baa4f27b0f4bba72c95c755 rdf:first sg:person.07355752320.43
90 rdf:rest Ndf4df3b4348848eb8eb59013626ba92c
91 Nac64745847ac496596ce6bc17a25af25 rdf:first sg:person.016652543020.09
92 rdf:rest N1a8032911a2a4c67ba389ed4af840aa3
93 Nb2371e44d6504ad6a0fe39bcc32180a6 rdf:first sg:person.012555247104.74
94 rdf:rest Ncf28139c13064ee3a8204b28bad286e9
95 Ncdc2ddd78f524440b618efcf19d470c1 schema:issueNumber 12
96 rdf:type schema:PublicationIssue
97 Ncf28139c13064ee3a8204b28bad286e9 rdf:first sg:person.012211352412.34
98 rdf:rest rdf:nil
99 Ndf4df3b4348848eb8eb59013626ba92c rdf:first sg:person.014121041567.87
100 rdf:rest Nb2371e44d6504ad6a0fe39bcc32180a6
101 Ne00db6c57d0b4b57bd2c53034075d1c2 schema:volumeNumber 48
102 rdf:type schema:PublicationVolume
103 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
104 schema:name Physical Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
107 schema:name Other Physical Sciences
108 rdf:type schema:DefinedTerm
109 sg:journal.1136692 schema:issn 1063-7826
110 1090-6479
111 schema:name Semiconductors
112 schema:publisher Pleiades Publishing
113 rdf:type schema:Periodical
114 sg:person.011317077151.34 schema:affiliation grid-institutes:grid.423485.c
115 schema:familyName Maleev
116 schema:givenName N. A.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011317077151.34
118 rdf:type schema:Person
119 sg:person.012211352412.34 schema:affiliation grid-institutes:grid.423485.c
120 schema:familyName Ustinov
121 schema:givenName V. M.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012211352412.34
123 rdf:type schema:Person
124 sg:person.012555247104.74 schema:affiliation grid-institutes:grid.4886.2
125 schema:familyName Nikitina
126 schema:givenName E. V.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012555247104.74
128 rdf:type schema:Person
129 sg:person.013204674115.84 schema:affiliation grid-institutes:grid.502986.0
130 schema:familyName Kuzmenkov
131 schema:givenName A. G.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013204674115.84
133 rdf:type schema:Person
134 sg:person.014121041567.87 schema:affiliation grid-institutes:grid.423485.c
135 schema:familyName Zadiranov
136 schema:givenName Yu. M.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121041567.87
138 rdf:type schema:Person
139 sg:person.015244136173.28 schema:affiliation grid-institutes:grid.423485.c
140 schema:familyName Blokhin
141 schema:givenName S. A.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015244136173.28
143 rdf:type schema:Person
144 sg:person.016652543020.09 schema:affiliation grid-institutes:grid.423485.c
145 schema:familyName Bobrov
146 schema:givenName M. A.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016652543020.09
148 rdf:type schema:Person
149 sg:person.07355752320.43 schema:affiliation grid-institutes:grid.32495.39
150 schema:familyName Blokhin
151 schema:givenName A. A.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07355752320.43
153 rdf:type schema:Person
154 sg:pub.10.1134/s1063782613060055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045242673
155 https://doi.org/10.1134/s1063782613060055
156 rdf:type schema:CreativeWork
157 sg:pub.10.1134/s1063785012020101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023017572
158 https://doi.org/10.1134/s1063785012020101
159 rdf:type schema:CreativeWork
160 grid-institutes:grid.32495.39 schema:alternateName Saint Petersburg State Polytechnical University, ul. Politekhnicheskaya 29, 195251, St. Petersburg, Russia
161 schema:name Saint Petersburg State Polytechnical University, ul. Politekhnicheskaya 29, 195251, St. Petersburg, Russia
162 rdf:type schema:Organization
163 grid-institutes:grid.423485.c schema:alternateName Ioffe Physical-Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia
164 schema:name Ioffe Physical-Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia
165 rdf:type schema:Organization
166 grid-institutes:grid.4886.2 schema:alternateName Saint Petersburg Academic University—Nanotechnology Research and Education Center, Russian Academy of Sciences, ul. Khlopina 8/3, 194021, St. Petersburg, Russia
167 schema:name Saint Petersburg Academic University—Nanotechnology Research and Education Center, Russian Academy of Sciences, ul. Khlopina 8/3, 194021, St. Petersburg, Russia
168 rdf:type schema:Organization
169 grid-institutes:grid.502986.0 schema:alternateName Submicron Heterostructures for Microelectronics Research and Engineering Center, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia
170 schema:name Ioffe Physical-Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia
171 Submicron Heterostructures for Microelectronics Research and Engineering Center, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...