Electron microscopy of GaAs-based structures with InAs and As quantum dots separated by an AlAs barrier View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-09

AUTHORS

V. N. Nevedomskiy, N. A. Bert, V. V. Chaldyshev, V. V. Preobrazhenskiy, M. A. Putyato, B. R. Semyagin

ABSTRACT

Electron microscopy studies of GaAs-based structures grown by molecular beam epitaxy and containing arrays of semiconductor InAs quantum dots and metal As quantum dots are performed. The array of InAs quantum dots is formed by the Stranski-Krastanov mechanism and consists of vertically coupled pairs of quantum dots separated by a GaAs spacer 10 nm thick. To separate the arrays of semiconductor and metal quantum dots and to prevent diffusion-induced mixing, the array of InAs quantum dots is overgrown with an AlAs barrier layer 5 or 10 nm thick, after which a GaAs layer is grown at a comparatively low temperature (180°C). The array of As quantum dots is formed in an As-enriched layer of the low-temperature GaAs by means of post-growth annealing at 400–760°C for 15 min. It is established that the AlAs barrier layer has a surface profile corresponding to that of a subbarrier layer with InAs quantum dots. The presence of such a profile causes the formation of V-shaped structural defects upon subsequent overgrowth with the GaAs layer. Besides, it was obtained that AlAs layer is thinned over the InAs quantum dots tops. It is shown that the AlAs barrier layer in the regions between the InAs quantum dots effectively prevents the starting diffusion of excess As at annealing temperatures up to 600°C. However, the concentration of mechanical stresses and the reduced thickness of the AlAs barrier layer near the tops of the InAs quantum dots lead to local barrier breakthroughs and the diffusion of As quantum dots into the region of coupled pairs of InAs quantum dots at higher annealing temperatures. More... »

PAGES

1185-1192

Journal

TITLE

Semiconductors

ISSUE

9

VOLUME

47

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782613090170

DOI

http://dx.doi.org/10.1134/s1063782613090170

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026850810


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nevedomskiy", 
        "givenName": "V. N.", 
        "id": "sg:person.012000201301.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012000201301.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bert", 
        "givenName": "N. A.", 
        "id": "sg:person.010314101551.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314101551.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chaldyshev", 
        "givenName": "V. V.", 
        "id": "sg:person.010716755351.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010716755351.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 13, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Preobrazhenskiy", 
        "givenName": "V. V.", 
        "id": "sg:person.013522361547.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013522361547.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 13, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Putyato", 
        "givenName": "M. A.", 
        "id": "sg:person.015271274417.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015271274417.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 13, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Semyagin", 
        "givenName": "B. R.", 
        "id": "sg:person.011644303155.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644303155.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/adma.200703096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003202414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrysgro.2005.06.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003619546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01798103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004373430", 
          "https://doi.org/10.1007/bf01798103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008213325", 
          "https://doi.org/10.1038/nphys1870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.146804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015469791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.146804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015469791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026793563", 
          "https://doi.org/10.1038/nature08812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026793563", 
          "https://doi.org/10.1038/nature08812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782609100236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037895194", 
          "https://doi.org/10.1134/s1063782609100236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782609100236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037895194", 
          "https://doi.org/10.1134/s1063782609100236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782609120082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045685827", 
          "https://doi.org/10.1134/s1063782609120082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782609120082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045685827", 
          "https://doi.org/10.1134/s1063782609120082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782611120104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046547303", 
          "https://doi.org/10.1134/s1063782611120104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2006.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047194243", 
          "https://doi.org/10.1038/nphoton.2006.49"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2006.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047194243", 
          "https://doi.org/10.1038/nphoton.2006.49"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047990558", 
          "https://doi.org/10.1038/nmat2629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047990558", 
          "https://doi.org/10.1038/nmat2629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jz101102e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056133632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jz101102e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056133632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.103343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057650915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.112790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057660343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1321795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057694483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2197038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057845669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2749303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057863287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.2542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.2542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.32.002125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065225176"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-09", 
    "datePublishedReg": "2013-09-01", 
    "description": "Electron microscopy studies of GaAs-based structures grown by molecular beam epitaxy and containing arrays of semiconductor InAs quantum dots and metal As quantum dots are performed. The array of InAs quantum dots is formed by the Stranski-Krastanov mechanism and consists of vertically coupled pairs of quantum dots separated by a GaAs spacer 10 nm thick. To separate the arrays of semiconductor and metal quantum dots and to prevent diffusion-induced mixing, the array of InAs quantum dots is overgrown with an AlAs barrier layer 5 or 10 nm thick, after which a GaAs layer is grown at a comparatively low temperature (180\u00b0C). The array of As quantum dots is formed in an As-enriched layer of the low-temperature GaAs by means of post-growth annealing at 400\u2013760\u00b0C for 15 min. It is established that the AlAs barrier layer has a surface profile corresponding to that of a subbarrier layer with InAs quantum dots. The presence of such a profile causes the formation of V-shaped structural defects upon subsequent overgrowth with the GaAs layer. Besides, it was obtained that AlAs layer is thinned over the InAs quantum dots tops. It is shown that the AlAs barrier layer in the regions between the InAs quantum dots effectively prevents the starting diffusion of excess As at annealing temperatures up to 600\u00b0C. However, the concentration of mechanical stresses and the reduced thickness of the AlAs barrier layer near the tops of the InAs quantum dots lead to local barrier breakthroughs and the diffusion of As quantum dots into the region of coupled pairs of InAs quantum dots at higher annealing temperatures.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063782613090170", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "name": "Electron microscopy of GaAs-based structures with InAs and As quantum dots separated by an AlAs barrier", 
    "pagination": "1185-1192", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7fe98b38e62fe5dd7ba8f7ae00c4067e10d53532ffeb2b64d873f372be401114"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782613090170"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026850810"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782613090170", 
      "https://app.dimensions.ai/details/publication/pub.1026850810"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS1063782613090170"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782613090170'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782613090170'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782613090170'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782613090170'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782613090170 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N355ff3c0b34a41649f672bd5ece038c3
4 schema:citation sg:pub.10.1007/bf01798103
5 sg:pub.10.1038/nature08812
6 sg:pub.10.1038/nmat2629
7 sg:pub.10.1038/nphoton.2006.49
8 sg:pub.10.1038/nphys1870
9 sg:pub.10.1134/s1063782609100236
10 sg:pub.10.1134/s1063782609120082
11 sg:pub.10.1134/s1063782611120104
12 https://doi.org/10.1002/adma.200703096
13 https://doi.org/10.1016/j.jcrysgro.2005.06.059
14 https://doi.org/10.1021/jz101102e
15 https://doi.org/10.1063/1.103343
16 https://doi.org/10.1063/1.112790
17 https://doi.org/10.1063/1.1321795
18 https://doi.org/10.1063/1.2197038
19 https://doi.org/10.1063/1.2749303
20 https://doi.org/10.1103/physrevlett.75.2542
21 https://doi.org/10.1103/physrevlett.97.146804
22 https://doi.org/10.1364/ol.32.002125
23 schema:datePublished 2013-09
24 schema:datePublishedReg 2013-09-01
25 schema:description Electron microscopy studies of GaAs-based structures grown by molecular beam epitaxy and containing arrays of semiconductor InAs quantum dots and metal As quantum dots are performed. The array of InAs quantum dots is formed by the Stranski-Krastanov mechanism and consists of vertically coupled pairs of quantum dots separated by a GaAs spacer 10 nm thick. To separate the arrays of semiconductor and metal quantum dots and to prevent diffusion-induced mixing, the array of InAs quantum dots is overgrown with an AlAs barrier layer 5 or 10 nm thick, after which a GaAs layer is grown at a comparatively low temperature (180°C). The array of As quantum dots is formed in an As-enriched layer of the low-temperature GaAs by means of post-growth annealing at 400–760°C for 15 min. It is established that the AlAs barrier layer has a surface profile corresponding to that of a subbarrier layer with InAs quantum dots. The presence of such a profile causes the formation of V-shaped structural defects upon subsequent overgrowth with the GaAs layer. Besides, it was obtained that AlAs layer is thinned over the InAs quantum dots tops. It is shown that the AlAs barrier layer in the regions between the InAs quantum dots effectively prevents the starting diffusion of excess As at annealing temperatures up to 600°C. However, the concentration of mechanical stresses and the reduced thickness of the AlAs barrier layer near the tops of the InAs quantum dots lead to local barrier breakthroughs and the diffusion of As quantum dots into the region of coupled pairs of InAs quantum dots at higher annealing temperatures.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf Na2d84a3fae1a451996f14415b1e343a1
30 Nd88ec08cbbfa465f956eff826063614e
31 sg:journal.1136692
32 schema:name Electron microscopy of GaAs-based structures with InAs and As quantum dots separated by an AlAs barrier
33 schema:pagination 1185-1192
34 schema:productId N929b750a545c4adf916e1402e6029d46
35 Nb9a9be3f7c15456ebcae25693595a5f5
36 Nbd40acf7d4da4961a20bb40777217aae
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026850810
38 https://doi.org/10.1134/s1063782613090170
39 schema:sdDatePublished 2019-04-11T01:05
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N684289c11bec4690acc30a892329eafe
42 schema:url http://link.springer.com/10.1134%2FS1063782613090170
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N16bf885be7fd49d6b059b5b90524f57f rdf:first sg:person.013522361547.82
47 rdf:rest Ne5af49a89e814ee8b1a4f62aa3f31795
48 N28f4b2d3f87842d0bf7bd7aff4aa2659 rdf:first sg:person.010716755351.29
49 rdf:rest N16bf885be7fd49d6b059b5b90524f57f
50 N355ff3c0b34a41649f672bd5ece038c3 rdf:first sg:person.012000201301.19
51 rdf:rest N64066a13be104072ba479d58689fbf3e
52 N64066a13be104072ba479d58689fbf3e rdf:first sg:person.010314101551.02
53 rdf:rest N28f4b2d3f87842d0bf7bd7aff4aa2659
54 N684289c11bec4690acc30a892329eafe schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N929b750a545c4adf916e1402e6029d46 schema:name doi
57 schema:value 10.1134/s1063782613090170
58 rdf:type schema:PropertyValue
59 Na2d84a3fae1a451996f14415b1e343a1 schema:issueNumber 9
60 rdf:type schema:PublicationIssue
61 Nb9a9be3f7c15456ebcae25693595a5f5 schema:name readcube_id
62 schema:value 7fe98b38e62fe5dd7ba8f7ae00c4067e10d53532ffeb2b64d873f372be401114
63 rdf:type schema:PropertyValue
64 Nbd40acf7d4da4961a20bb40777217aae schema:name dimensions_id
65 schema:value pub.1026850810
66 rdf:type schema:PropertyValue
67 Nd88ec08cbbfa465f956eff826063614e schema:volumeNumber 47
68 rdf:type schema:PublicationVolume
69 Ne5af49a89e814ee8b1a4f62aa3f31795 rdf:first sg:person.015271274417.07
70 rdf:rest Nec11bded745048fd949ada52c609c109
71 Nec11bded745048fd949ada52c609c109 rdf:first sg:person.011644303155.87
72 rdf:rest rdf:nil
73 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
74 schema:name Engineering
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
77 schema:name Materials Engineering
78 rdf:type schema:DefinedTerm
79 sg:journal.1136692 schema:issn 1063-7826
80 1090-6479
81 schema:name Semiconductors
82 rdf:type schema:Periodical
83 sg:person.010314101551.02 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
84 schema:familyName Bert
85 schema:givenName N. A.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314101551.02
87 rdf:type schema:Person
88 sg:person.010716755351.29 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
89 schema:familyName Chaldyshev
90 schema:givenName V. V.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010716755351.29
92 rdf:type schema:Person
93 sg:person.011644303155.87 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
94 schema:familyName Semyagin
95 schema:givenName B. R.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644303155.87
97 rdf:type schema:Person
98 sg:person.012000201301.19 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
99 schema:familyName Nevedomskiy
100 schema:givenName V. N.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012000201301.19
102 rdf:type schema:Person
103 sg:person.013522361547.82 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
104 schema:familyName Preobrazhenskiy
105 schema:givenName V. V.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013522361547.82
107 rdf:type schema:Person
108 sg:person.015271274417.07 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
109 schema:familyName Putyato
110 schema:givenName M. A.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015271274417.07
112 rdf:type schema:Person
113 sg:pub.10.1007/bf01798103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004373430
114 https://doi.org/10.1007/bf01798103
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/nature08812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026793563
117 https://doi.org/10.1038/nature08812
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/nmat2629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047990558
120 https://doi.org/10.1038/nmat2629
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/nphoton.2006.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047194243
123 https://doi.org/10.1038/nphoton.2006.49
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/nphys1870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008213325
126 https://doi.org/10.1038/nphys1870
127 rdf:type schema:CreativeWork
128 sg:pub.10.1134/s1063782609100236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037895194
129 https://doi.org/10.1134/s1063782609100236
130 rdf:type schema:CreativeWork
131 sg:pub.10.1134/s1063782609120082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045685827
132 https://doi.org/10.1134/s1063782609120082
133 rdf:type schema:CreativeWork
134 sg:pub.10.1134/s1063782611120104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046547303
135 https://doi.org/10.1134/s1063782611120104
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/adma.200703096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003202414
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.jcrysgro.2005.06.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003619546
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1021/jz101102e schema:sameAs https://app.dimensions.ai/details/publication/pub.1056133632
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1063/1.103343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057650915
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1063/1.112790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057660343
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1063/1.1321795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057694483
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1063/1.2197038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057845669
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1063/1.2749303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057863287
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevlett.75.2542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811854
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevlett.97.146804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015469791
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1364/ol.32.002125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065225176
158 rdf:type schema:CreativeWork
159 https://www.grid.ac/institutes/grid.423485.c schema:alternateName Ioffe Institute
160 schema:name Ioffe Physical-Technical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia
161 rdf:type schema:Organization
162 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
163 schema:name Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent’eva 13, 630090, Novosibirsk, Russia
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...