Optical properties of GaAs structures containing a periodic system of layers of AsSb metal nanoinclusions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-10

AUTHORS

P. V. Lukin, V. V. Chaldyshev, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin

ABSTRACT

The optical reflectance and transmittance of GaAs structures grown by molecular-beam epitaxy at a low temperature and periodically δ-doped with antimony or phosphorus are studied. The periodicity of the doping corresponded to the Bragg condition for light with a free-space wavelength of ∼1.4 μm. The structures were subjected to annealing at different temperatures in the range from 400 to 760°C. Annealing brings about the formation of a three-dimensional chaotic system of As metal nanoinclusions (quantum dots) inside the GaAs epitaxial layer as well as the formation of two-dimensional layers of AsSb metal nanoinclusions (quantum dots) on the Sb δ layers. The P δ layers have no significant effect on the formation of the system of As nanoinclusions. No features that might be attributed to a disordered three-dimensional system of As nanoinclusions are detected in the optical transmittance and reflectance spectra. The periodic system of two-dimensional layers of AsSb metal nanoinclusions manifests itself as a resonance peak in the optical reflectance and absorption spectra. The resonance reflectance and absorption coefficient increase, as the dimensions of the AsSb nanoinclusions increase. The resonance wavelength depends on the angle of light incidence in accordance with Bragg’s law. More... »

PAGES

1291-1295

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782612100089

DOI

http://dx.doi.org/10.1134/s1063782612100089

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025263844


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lukin", 
        "givenName": "P. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chaldyshev", 
        "givenName": "V. V.", 
        "id": "sg:person.010716755351.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010716755351.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Semiconductor Physics", 
          "id": "https://www.grid.ac/institutes/grid.450314.7", 
          "name": [
            "Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Preobrazhenskii", 
        "givenName": "V. V.", 
        "id": "sg:person.010664106542.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010664106542.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Semiconductor Physics", 
          "id": "https://www.grid.ac/institutes/grid.450314.7", 
          "name": [
            "Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Putyato", 
        "givenName": "M. A.", 
        "id": "sg:person.015271274417.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015271274417.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Semiconductor Physics", 
          "id": "https://www.grid.ac/institutes/grid.450314.7", 
          "name": [
            "Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Semyagin", 
        "givenName": "B. R.", 
        "id": "sg:person.011644303155.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644303155.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1063782609020274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002769306", 
          "https://doi.org/10.1134/s1063782609020274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physb.2009.08.236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005927492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782609080211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016358694", 
          "https://doi.org/10.1134/s1063782609080211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782609080211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016358694", 
          "https://doi.org/10.1134/s1063782609080211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5107(01)00904-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021255487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0268-1242/12/1/010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021616020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1187418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029491873", 
          "https://doi.org/10.1134/1.1187418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1187561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045352437", 
          "https://doi.org/10.1134/1.1187561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.108704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057656271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.111559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057659118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.116748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057680959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.123576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057687724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.336070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057941564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.357445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057977506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.365401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057992589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.92852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058132991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3367/ufne.0181.201101e.0059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071210238"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-10", 
    "datePublishedReg": "2012-10-01", 
    "description": "The optical reflectance and transmittance of GaAs structures grown by molecular-beam epitaxy at a low temperature and periodically \u03b4-doped with antimony or phosphorus are studied. The periodicity of the doping corresponded to the Bragg condition for light with a free-space wavelength of \u223c1.4 \u03bcm. The structures were subjected to annealing at different temperatures in the range from 400 to 760\u00b0C. Annealing brings about the formation of a three-dimensional chaotic system of As metal nanoinclusions (quantum dots) inside the GaAs epitaxial layer as well as the formation of two-dimensional layers of AsSb metal nanoinclusions (quantum dots) on the Sb \u03b4 layers. The P \u03b4 layers have no significant effect on the formation of the system of As nanoinclusions. No features that might be attributed to a disordered three-dimensional system of As nanoinclusions are detected in the optical transmittance and reflectance spectra. The periodic system of two-dimensional layers of AsSb metal nanoinclusions manifests itself as a resonance peak in the optical reflectance and absorption spectra. The resonance reflectance and absorption coefficient increase, as the dimensions of the AsSb nanoinclusions increase. The resonance wavelength depends on the angle of light incidence in accordance with Bragg\u2019s law.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063782612100089", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "name": "Optical properties of GaAs structures containing a periodic system of layers of AsSb metal nanoinclusions", 
    "pagination": "1291-1295", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "785b59899b2fdc066d9eaded9a904b02db2f23c2c76efc59854fbe8ef9f7ede7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782612100089"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025263844"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782612100089", 
      "https://app.dimensions.ai/details/publication/pub.1025263844"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS1063782612100089"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782612100089'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782612100089'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782612100089'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782612100089'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782612100089 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author Na2fa6e116ab74ac7adb5f9c2a7b92583
4 schema:citation sg:pub.10.1134/1.1187418
5 sg:pub.10.1134/1.1187561
6 sg:pub.10.1134/s1063782609020274
7 sg:pub.10.1134/s1063782609080211
8 https://doi.org/10.1016/j.physb.2009.08.236
9 https://doi.org/10.1016/s0921-5107(01)00904-7
10 https://doi.org/10.1063/1.108704
11 https://doi.org/10.1063/1.111559
12 https://doi.org/10.1063/1.116748
13 https://doi.org/10.1063/1.123576
14 https://doi.org/10.1063/1.336070
15 https://doi.org/10.1063/1.357445
16 https://doi.org/10.1063/1.365401
17 https://doi.org/10.1063/1.92852
18 https://doi.org/10.1088/0268-1242/12/1/010
19 https://doi.org/10.3367/ufne.0181.201101e.0059
20 schema:datePublished 2012-10
21 schema:datePublishedReg 2012-10-01
22 schema:description The optical reflectance and transmittance of GaAs structures grown by molecular-beam epitaxy at a low temperature and periodically δ-doped with antimony or phosphorus are studied. The periodicity of the doping corresponded to the Bragg condition for light with a free-space wavelength of ∼1.4 μm. The structures were subjected to annealing at different temperatures in the range from 400 to 760°C. Annealing brings about the formation of a three-dimensional chaotic system of As metal nanoinclusions (quantum dots) inside the GaAs epitaxial layer as well as the formation of two-dimensional layers of AsSb metal nanoinclusions (quantum dots) on the Sb δ layers. The P δ layers have no significant effect on the formation of the system of As nanoinclusions. No features that might be attributed to a disordered three-dimensional system of As nanoinclusions are detected in the optical transmittance and reflectance spectra. The periodic system of two-dimensional layers of AsSb metal nanoinclusions manifests itself as a resonance peak in the optical reflectance and absorption spectra. The resonance reflectance and absorption coefficient increase, as the dimensions of the AsSb nanoinclusions increase. The resonance wavelength depends on the angle of light incidence in accordance with Bragg’s law.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N15532ee20d8d4f5db0a81be3562c1ba1
27 Neb44c8e11a004a79a2a6adf7d685b600
28 sg:journal.1136692
29 schema:name Optical properties of GaAs structures containing a periodic system of layers of AsSb metal nanoinclusions
30 schema:pagination 1291-1295
31 schema:productId N2924d151321e43a4bbd6ebe2ded0b8d8
32 N6717fadc71284653adda294a16d2f84e
33 Nfbec0d36a0734917ad6a243664b59554
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025263844
35 https://doi.org/10.1134/s1063782612100089
36 schema:sdDatePublished 2019-04-10T14:08
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N5bdee76e4cb24d08af9dc238c7e087f9
39 schema:url http://link.springer.com/10.1134%2FS1063782612100089
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N15532ee20d8d4f5db0a81be3562c1ba1 schema:volumeNumber 46
44 rdf:type schema:PublicationVolume
45 N2924d151321e43a4bbd6ebe2ded0b8d8 schema:name readcube_id
46 schema:value 785b59899b2fdc066d9eaded9a904b02db2f23c2c76efc59854fbe8ef9f7ede7
47 rdf:type schema:PropertyValue
48 N292681d9f7e942028bc40109e12632d7 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
49 schema:familyName Lukin
50 schema:givenName P. V.
51 rdf:type schema:Person
52 N48cb0f069ad8400bad0f85d782a7e608 rdf:first sg:person.010664106542.73
53 rdf:rest Nd61dd8471c334569bd7e2d7b0c1612de
54 N5bdee76e4cb24d08af9dc238c7e087f9 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N6717fadc71284653adda294a16d2f84e schema:name dimensions_id
57 schema:value pub.1025263844
58 rdf:type schema:PropertyValue
59 Na2fa6e116ab74ac7adb5f9c2a7b92583 rdf:first N292681d9f7e942028bc40109e12632d7
60 rdf:rest Nee610e685106414e9a223eb11d94a094
61 Nd61dd8471c334569bd7e2d7b0c1612de rdf:first sg:person.015271274417.07
62 rdf:rest Nfb7775db614e4ad884fde435ad465706
63 Neb44c8e11a004a79a2a6adf7d685b600 schema:issueNumber 10
64 rdf:type schema:PublicationIssue
65 Nee610e685106414e9a223eb11d94a094 rdf:first sg:person.010716755351.29
66 rdf:rest N48cb0f069ad8400bad0f85d782a7e608
67 Nfb7775db614e4ad884fde435ad465706 rdf:first sg:person.011644303155.87
68 rdf:rest rdf:nil
69 Nfbec0d36a0734917ad6a243664b59554 schema:name doi
70 schema:value 10.1134/s1063782612100089
71 rdf:type schema:PropertyValue
72 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
73 schema:name Physical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
76 schema:name Optical Physics
77 rdf:type schema:DefinedTerm
78 sg:journal.1136692 schema:issn 1063-7826
79 1090-6479
80 schema:name Semiconductors
81 rdf:type schema:Periodical
82 sg:person.010664106542.73 schema:affiliation https://www.grid.ac/institutes/grid.450314.7
83 schema:familyName Preobrazhenskii
84 schema:givenName V. V.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010664106542.73
86 rdf:type schema:Person
87 sg:person.010716755351.29 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
88 schema:familyName Chaldyshev
89 schema:givenName V. V.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010716755351.29
91 rdf:type schema:Person
92 sg:person.011644303155.87 schema:affiliation https://www.grid.ac/institutes/grid.450314.7
93 schema:familyName Semyagin
94 schema:givenName B. R.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644303155.87
96 rdf:type schema:Person
97 sg:person.015271274417.07 schema:affiliation https://www.grid.ac/institutes/grid.450314.7
98 schema:familyName Putyato
99 schema:givenName M. A.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015271274417.07
101 rdf:type schema:Person
102 sg:pub.10.1134/1.1187418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029491873
103 https://doi.org/10.1134/1.1187418
104 rdf:type schema:CreativeWork
105 sg:pub.10.1134/1.1187561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045352437
106 https://doi.org/10.1134/1.1187561
107 rdf:type schema:CreativeWork
108 sg:pub.10.1134/s1063782609020274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002769306
109 https://doi.org/10.1134/s1063782609020274
110 rdf:type schema:CreativeWork
111 sg:pub.10.1134/s1063782609080211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016358694
112 https://doi.org/10.1134/s1063782609080211
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.physb.2009.08.236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005927492
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/s0921-5107(01)00904-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021255487
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1063/1.108704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057656271
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1063/1.111559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057659118
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1063/1.116748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057680959
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1063/1.123576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057687724
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1063/1.336070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057941564
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1063/1.357445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057977506
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1063/1.365401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057992589
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1063/1.92852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058132991
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1088/0268-1242/12/1/010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021616020
135 rdf:type schema:CreativeWork
136 https://doi.org/10.3367/ufne.0181.201101e.0059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071210238
137 rdf:type schema:CreativeWork
138 https://www.grid.ac/institutes/grid.423485.c schema:alternateName Ioffe Institute
139 schema:name Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
140 rdf:type schema:Organization
141 https://www.grid.ac/institutes/grid.450314.7 schema:alternateName Institute of Semiconductor Physics
142 schema:name Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...