Quantum-confined stark effect and localization of charge carriers in Al0.3Ga0.7N/Al0.4Ga0.6N quantum wells with different morphologies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-08

AUTHORS

E. A. Shevchenko, V. N. Jmerik, A. M. Mizerov, A. A. Sitnikova, S. V. Ivanov, A. A. Toropov

ABSTRACT

The electric fields in Al0.3Ga0.7N/Al0.4Ga0.6N quantum wells are estimated. The quantum wells are grown by plasma-assisted molecular-beam epitaxy with plasma activation of nitrogen. The three-dimensional and planar modes of buffer layer growth are used. The transition to the three-dimensional mode of growth yields a substantial increase in the photoluminescence intensity of the quantum wells and a shift of the photoluminescence line to shorter wavelengths. These effects are attributed to the fact that, because of the extra three-dimensional localization of charge carriers in the quantum-well layer, the quantum-confined Stark effect relaxes. The effect of localization is supposedly due to spontaneous composition fluctuations formed in the AlGaN alloy and enhanced by the three-dimensional growth. More... »

PAGES

998-1002

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782612080192

DOI

http://dx.doi.org/10.1134/s1063782612080192

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041700611


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shevchenko", 
        "givenName": "E. A.", 
        "id": "sg:person.011332217145.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011332217145.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jmerik", 
        "givenName": "V. N.", 
        "id": "sg:person.010773242043.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010773242043.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mizerov", 
        "givenName": "A. M.", 
        "id": "sg:person.011570622443.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011570622443.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sitnikova", 
        "givenName": "A. A.", 
        "id": "sg:person.015133024650.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015133024650.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ivanov", 
        "givenName": "S. V.", 
        "id": "sg:person.01064304443.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064304443.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toropov", 
        "givenName": "A. A.", 
        "id": "sg:person.010472630272.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010472630272.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/spmi.1995.1001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010923428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.8849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022764881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.8849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022764881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782608120099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030794850", 
          "https://doi.org/10.1134/s1063782608120099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/spmi.1995.1020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048140732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0268-1242/26/1/014036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052839425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1368156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057699617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2037869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057836353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2142333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057839607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2358107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057852070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2382622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057853546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2817749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057874789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.7211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060596228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.7211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060596228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3.44962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061148337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/apex.3.072103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063031137"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-08", 
    "datePublishedReg": "2012-08-01", 
    "description": "The electric fields in Al0.3Ga0.7N/Al0.4Ga0.6N quantum wells are estimated. The quantum wells are grown by plasma-assisted molecular-beam epitaxy with plasma activation of nitrogen. The three-dimensional and planar modes of buffer layer growth are used. The transition to the three-dimensional mode of growth yields a substantial increase in the photoluminescence intensity of the quantum wells and a shift of the photoluminescence line to shorter wavelengths. These effects are attributed to the fact that, because of the extra three-dimensional localization of charge carriers in the quantum-well layer, the quantum-confined Stark effect relaxes. The effect of localization is supposedly due to spontaneous composition fluctuations formed in the AlGaN alloy and enhanced by the three-dimensional growth.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063782612080192", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "name": "Quantum-confined stark effect and localization of charge carriers in Al0.3Ga0.7N/Al0.4Ga0.6N quantum wells with different morphologies", 
    "pagination": "998-1002", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c6a503e13b970487839cb414ae14c40b6d6f7286044236dd8e6ebf09d307a644"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782612080192"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041700611"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782612080192", 
      "https://app.dimensions.ai/details/publication/pub.1041700611"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS1063782612080192"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782612080192'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782612080192'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782612080192'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782612080192'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782612080192 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N26a3fd1acaa54e6690e43d906e70f163
4 schema:citation sg:pub.10.1134/s1063782608120099
5 https://doi.org/10.1006/spmi.1995.1001
6 https://doi.org/10.1006/spmi.1995.1020
7 https://doi.org/10.1063/1.1368156
8 https://doi.org/10.1063/1.2037869
9 https://doi.org/10.1063/1.2142333
10 https://doi.org/10.1063/1.2358107
11 https://doi.org/10.1063/1.2382622
12 https://doi.org/10.1063/1.2817749
13 https://doi.org/10.1088/0268-1242/26/1/014036
14 https://doi.org/10.1103/physrevb.60.8849
15 https://doi.org/10.1103/physrevb.61.7211
16 https://doi.org/10.1109/3.44962
17 https://doi.org/10.1143/apex.3.072103
18 schema:datePublished 2012-08
19 schema:datePublishedReg 2012-08-01
20 schema:description The electric fields in Al0.3Ga0.7N/Al0.4Ga0.6N quantum wells are estimated. The quantum wells are grown by plasma-assisted molecular-beam epitaxy with plasma activation of nitrogen. The three-dimensional and planar modes of buffer layer growth are used. The transition to the three-dimensional mode of growth yields a substantial increase in the photoluminescence intensity of the quantum wells and a shift of the photoluminescence line to shorter wavelengths. These effects are attributed to the fact that, because of the extra three-dimensional localization of charge carriers in the quantum-well layer, the quantum-confined Stark effect relaxes. The effect of localization is supposedly due to spontaneous composition fluctuations formed in the AlGaN alloy and enhanced by the three-dimensional growth.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N3961880f1d3645dc9d175d49c3fed982
25 N53a3a6ea894a468cb076c6ef9fb341a1
26 sg:journal.1136692
27 schema:name Quantum-confined stark effect and localization of charge carriers in Al0.3Ga0.7N/Al0.4Ga0.6N quantum wells with different morphologies
28 schema:pagination 998-1002
29 schema:productId N22fad58cee7d45fd8ec77f1948c67572
30 N2cb22bae563d45f282c53e547166d677
31 Na37a3a68af9642bd9ab3d725b5828195
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041700611
33 https://doi.org/10.1134/s1063782612080192
34 schema:sdDatePublished 2019-04-10T21:35
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Nd15fae5e6cf14d819109a6f053e5e3c5
37 schema:url http://link.springer.com/10.1134%2FS1063782612080192
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N22fad58cee7d45fd8ec77f1948c67572 schema:name dimensions_id
42 schema:value pub.1041700611
43 rdf:type schema:PropertyValue
44 N26a3fd1acaa54e6690e43d906e70f163 rdf:first sg:person.011332217145.87
45 rdf:rest Ndcea6edaa8914fb984fbcb76808504ea
46 N2cb22bae563d45f282c53e547166d677 schema:name readcube_id
47 schema:value c6a503e13b970487839cb414ae14c40b6d6f7286044236dd8e6ebf09d307a644
48 rdf:type schema:PropertyValue
49 N3961880f1d3645dc9d175d49c3fed982 schema:volumeNumber 46
50 rdf:type schema:PublicationVolume
51 N3e0b20f9d651468693cfd06084a34bb8 rdf:first sg:person.01064304443.31
52 rdf:rest Nfe7d6a95610945cc9a788dce22774cff
53 N53a3a6ea894a468cb076c6ef9fb341a1 schema:issueNumber 8
54 rdf:type schema:PublicationIssue
55 N77cf40d5a6e149afb130d38673decefd rdf:first sg:person.011570622443.35
56 rdf:rest N7ebac1a5245a47818d4a21f8b024fd47
57 N7ebac1a5245a47818d4a21f8b024fd47 rdf:first sg:person.015133024650.23
58 rdf:rest N3e0b20f9d651468693cfd06084a34bb8
59 Na37a3a68af9642bd9ab3d725b5828195 schema:name doi
60 schema:value 10.1134/s1063782612080192
61 rdf:type schema:PropertyValue
62 Nd15fae5e6cf14d819109a6f053e5e3c5 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Ndcea6edaa8914fb984fbcb76808504ea rdf:first sg:person.010773242043.36
65 rdf:rest N77cf40d5a6e149afb130d38673decefd
66 Nfe7d6a95610945cc9a788dce22774cff rdf:first sg:person.010472630272.42
67 rdf:rest rdf:nil
68 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
69 schema:name Physical Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
72 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
73 rdf:type schema:DefinedTerm
74 sg:journal.1136692 schema:issn 1063-7826
75 1090-6479
76 schema:name Semiconductors
77 rdf:type schema:Periodical
78 sg:person.010472630272.42 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
79 schema:familyName Toropov
80 schema:givenName A. A.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010472630272.42
82 rdf:type schema:Person
83 sg:person.01064304443.31 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
84 schema:familyName Ivanov
85 schema:givenName S. V.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064304443.31
87 rdf:type schema:Person
88 sg:person.010773242043.36 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
89 schema:familyName Jmerik
90 schema:givenName V. N.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010773242043.36
92 rdf:type schema:Person
93 sg:person.011332217145.87 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
94 schema:familyName Shevchenko
95 schema:givenName E. A.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011332217145.87
97 rdf:type schema:Person
98 sg:person.011570622443.35 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
99 schema:familyName Mizerov
100 schema:givenName A. M.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011570622443.35
102 rdf:type schema:Person
103 sg:person.015133024650.23 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
104 schema:familyName Sitnikova
105 schema:givenName A. A.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015133024650.23
107 rdf:type schema:Person
108 sg:pub.10.1134/s1063782608120099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030794850
109 https://doi.org/10.1134/s1063782608120099
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1006/spmi.1995.1001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010923428
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1006/spmi.1995.1020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048140732
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1063/1.1368156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057699617
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1063/1.2037869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057836353
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1063/1.2142333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057839607
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1063/1.2358107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057852070
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1063/1.2382622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057853546
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1063/1.2817749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057874789
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1088/0268-1242/26/1/014036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052839425
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevb.60.8849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022764881
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevb.61.7211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060596228
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/3.44962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061148337
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1143/apex.3.072103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063031137
136 rdf:type schema:CreativeWork
137 https://www.grid.ac/institutes/grid.423485.c schema:alternateName Ioffe Institute
138 schema:name Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...