Measurement of Young’s modulus of GaAs nanowires growing obliquely on a substrate View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-05-06

AUTHORS

P. A. Alekseev, M. S. Dunaevskii, A. V. Stovpyaga, M. Lepsa, A. N. Titkov

ABSTRACT

A convenient and fast method for measuring Young’s modulus of semiconductor nanowires obliquely standing on the growth substrate is presented. In this method, the nanowire is elastically bent under the force exerted by the probe of an atomic-force microscope, and the load-unload dependences for the bending of the probe cantilever are recorded. Next, these curves are used to find the bending stiffness of the tilted nanowires, after which, taking into account the nanowire dimensions, Young’s modulus is obtained. The implementation of this method is demonstrated for tilted GaAs nanowires growing on a GaAs (111) substrate. Young’s modulus is determined by applying finite-element analysis to the problem of the stationary elastic bending of a nanowire taking into account the actual nanowire shape and faceting. It proves that a fairly accurate estimate of Young’s modulus can be obtained even if the nanowire shape is approximated by a circular cylinder with a single cross-sectional area. The values of Young’s modulus obtained for GaAs nanowires of cubic lattice symmetry are 2 to 3 times smaller than its value for bulk GaAs. This difference is attributed to the presence of stacking faults in the central part of the nanowires. More... »

PAGES

641-646

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s106378261205003x

DOI

http://dx.doi.org/10.1134/s106378261205003x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044752404


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "St. Petersburg State Electrotechnical University \u201cLETI\u201d, 197376, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.15447.33", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
            "St. Petersburg State Electrotechnical University \u201cLETI\u201d, 197376, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alekseev", 
        "givenName": "P. A.", 
        "id": "sg:person.0643041400.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643041400.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dunaevskii", 
        "givenName": "M. S.", 
        "id": "sg:person.011312034707.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011312034707.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St. Petersburg National Research University of Information Technologies, Mechanics, and Optics (ITMO), 197101, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.35915.3b", 
          "name": [
            "St. Petersburg National Research University of Information Technologies, Mechanics, and Optics (ITMO), 197101, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stovpyaga", 
        "givenName": "A. V.", 
        "id": "sg:person.07734240133.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07734240133.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peter Gr\u00fcnberg Institute (PGI-9), Forschungszentrum J\u00fclich GmbH, 52425, J\u00fclich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Peter Gr\u00fcnberg Institute (PGI-9), Forschungszentrum J\u00fclich GmbH, 52425, J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lepsa", 
        "givenName": "M.", 
        "id": "sg:person.0741635247.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741635247.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Titkov", 
        "givenName": "A. N.", 
        "id": "sg:person.015555102315.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015555102315.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nbt1138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006647082", 
          "https://doi.org/10.1038/nbt1138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013811063", 
          "https://doi.org/10.1038/nmat1403"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-05-06", 
    "datePublishedReg": "2012-05-06", 
    "description": "A convenient and fast method for measuring Young\u2019s modulus of semiconductor nanowires obliquely standing on the growth substrate is presented. In this method, the nanowire is elastically bent under the force exerted by the probe of an atomic-force microscope, and the load-unload dependences for the bending of the probe cantilever are recorded. Next, these curves are used to find the bending stiffness of the tilted nanowires, after which, taking into account the nanowire dimensions, Young\u2019s modulus is obtained. The implementation of this method is demonstrated for tilted GaAs nanowires growing on a GaAs (111) substrate. Young\u2019s modulus is determined by applying finite-element analysis to the problem of the stationary elastic bending of a nanowire taking into account the actual nanowire shape and faceting. It proves that a fairly accurate estimate of Young\u2019s modulus can be obtained even if the nanowire shape is approximated by a circular cylinder with a single cross-sectional area. The values of Young\u2019s modulus obtained for GaAs nanowires of cubic lattice symmetry are 2 to 3 times smaller than its value for bulk GaAs. This difference is attributed to the presence of stacking faults in the central part of the nanowires.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s106378261205003x", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "keywords": [
      "Young's modulus", 
      "GaAs nanowires", 
      "nanowire shape", 
      "finite element analysis", 
      "atomic force microscope", 
      "probe cantilever", 
      "nanowire dimensions", 
      "semiconductor nanowires", 
      "GaAs substrates", 
      "circular cylinder", 
      "nanowires", 
      "elastic bending", 
      "modulus", 
      "cubic lattice symmetry", 
      "bending", 
      "bulk GaAs", 
      "substrate", 
      "cantilever", 
      "stiffness", 
      "cylinder", 
      "GaAs", 
      "fast method", 
      "shape", 
      "growth substrate", 
      "accurate estimates", 
      "cross-sectional area", 
      "method", 
      "microscope", 
      "faults", 
      "faceting", 
      "force", 
      "single cross-sectional area", 
      "lattice symmetry", 
      "measurements", 
      "account", 
      "values", 
      "dependence", 
      "curves", 
      "implementation", 
      "central part", 
      "problem", 
      "time", 
      "probe", 
      "dimensions", 
      "area", 
      "analysis", 
      "part", 
      "estimates", 
      "presence", 
      "symmetry", 
      "differences"
    ], 
    "name": "Measurement of Young\u2019s modulus of GaAs nanowires growing obliquely on a substrate", 
    "pagination": "641-646", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044752404"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s106378261205003x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s106378261205003x", 
      "https://app.dimensions.ai/details/publication/pub.1044752404"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_577.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s106378261205003x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s106378261205003x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s106378261205003x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s106378261205003x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s106378261205003x'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      21 PREDICATES      78 URIs      67 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s106378261205003x schema:about anzsrc-for:02
2 anzsrc-for:0204
3 anzsrc-for:0206
4 schema:author N75dedc27309e42679dfec1304a3020b6
5 schema:citation sg:pub.10.1038/nbt1138
6 sg:pub.10.1038/nmat1403
7 schema:datePublished 2012-05-06
8 schema:datePublishedReg 2012-05-06
9 schema:description A convenient and fast method for measuring Young’s modulus of semiconductor nanowires obliquely standing on the growth substrate is presented. In this method, the nanowire is elastically bent under the force exerted by the probe of an atomic-force microscope, and the load-unload dependences for the bending of the probe cantilever are recorded. Next, these curves are used to find the bending stiffness of the tilted nanowires, after which, taking into account the nanowire dimensions, Young’s modulus is obtained. The implementation of this method is demonstrated for tilted GaAs nanowires growing on a GaAs (111) substrate. Young’s modulus is determined by applying finite-element analysis to the problem of the stationary elastic bending of a nanowire taking into account the actual nanowire shape and faceting. It proves that a fairly accurate estimate of Young’s modulus can be obtained even if the nanowire shape is approximated by a circular cylinder with a single cross-sectional area. The values of Young’s modulus obtained for GaAs nanowires of cubic lattice symmetry are 2 to 3 times smaller than its value for bulk GaAs. This difference is attributed to the presence of stacking faults in the central part of the nanowires.
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf N24cd80c8f20243b586ac85fe48dbea22
13 N2c2711801eca41d681e6547acfee2f43
14 sg:journal.1136692
15 schema:keywords GaAs
16 GaAs nanowires
17 GaAs substrates
18 Young's modulus
19 account
20 accurate estimates
21 analysis
22 area
23 atomic force microscope
24 bending
25 bulk GaAs
26 cantilever
27 central part
28 circular cylinder
29 cross-sectional area
30 cubic lattice symmetry
31 curves
32 cylinder
33 dependence
34 differences
35 dimensions
36 elastic bending
37 estimates
38 faceting
39 fast method
40 faults
41 finite element analysis
42 force
43 growth substrate
44 implementation
45 lattice symmetry
46 measurements
47 method
48 microscope
49 modulus
50 nanowire dimensions
51 nanowire shape
52 nanowires
53 part
54 presence
55 probe
56 probe cantilever
57 problem
58 semiconductor nanowires
59 shape
60 single cross-sectional area
61 stiffness
62 substrate
63 symmetry
64 time
65 values
66 schema:name Measurement of Young’s modulus of GaAs nanowires growing obliquely on a substrate
67 schema:pagination 641-646
68 schema:productId N3af3d09f77a1458b9a3358f9c7cb60aa
69 Ndd301626875c4988a5fc3da89e100f66
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044752404
71 https://doi.org/10.1134/s106378261205003x
72 schema:sdDatePublished 2022-09-02T15:55
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N3414c51fa942415d922e513836a55a01
75 schema:url https://doi.org/10.1134/s106378261205003x
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N24cd80c8f20243b586ac85fe48dbea22 schema:volumeNumber 46
80 rdf:type schema:PublicationVolume
81 N2c2711801eca41d681e6547acfee2f43 schema:issueNumber 5
82 rdf:type schema:PublicationIssue
83 N3414c51fa942415d922e513836a55a01 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N3af3d09f77a1458b9a3358f9c7cb60aa schema:name doi
86 schema:value 10.1134/s106378261205003x
87 rdf:type schema:PropertyValue
88 N75dedc27309e42679dfec1304a3020b6 rdf:first sg:person.0643041400.21
89 rdf:rest N95c42ccabee043d594d4bbb7c617c141
90 N82e7596b663440eaacc4647d113b5766 rdf:first sg:person.0741635247.41
91 rdf:rest Nd092268facee4c7f9a2a2322d67ee483
92 N95c42ccabee043d594d4bbb7c617c141 rdf:first sg:person.011312034707.19
93 rdf:rest Naef9bd26164f4627af4caa56a5b90cf0
94 Naef9bd26164f4627af4caa56a5b90cf0 rdf:first sg:person.07734240133.23
95 rdf:rest N82e7596b663440eaacc4647d113b5766
96 Nd092268facee4c7f9a2a2322d67ee483 rdf:first sg:person.015555102315.22
97 rdf:rest rdf:nil
98 Ndd301626875c4988a5fc3da89e100f66 schema:name dimensions_id
99 schema:value pub.1044752404
100 rdf:type schema:PropertyValue
101 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
102 schema:name Physical Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
105 schema:name Condensed Matter Physics
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
108 schema:name Quantum Physics
109 rdf:type schema:DefinedTerm
110 sg:journal.1136692 schema:issn 1063-7826
111 1090-6479
112 schema:name Semiconductors
113 schema:publisher Pleiades Publishing
114 rdf:type schema:Periodical
115 sg:person.011312034707.19 schema:affiliation grid-institutes:grid.423485.c
116 schema:familyName Dunaevskii
117 schema:givenName M. S.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011312034707.19
119 rdf:type schema:Person
120 sg:person.015555102315.22 schema:affiliation grid-institutes:grid.423485.c
121 schema:familyName Titkov
122 schema:givenName A. N.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015555102315.22
124 rdf:type schema:Person
125 sg:person.0643041400.21 schema:affiliation grid-institutes:grid.15447.33
126 schema:familyName Alekseev
127 schema:givenName P. A.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643041400.21
129 rdf:type schema:Person
130 sg:person.0741635247.41 schema:affiliation grid-institutes:grid.8385.6
131 schema:familyName Lepsa
132 schema:givenName M.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741635247.41
134 rdf:type schema:Person
135 sg:person.07734240133.23 schema:affiliation grid-institutes:grid.35915.3b
136 schema:familyName Stovpyaga
137 schema:givenName A. V.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07734240133.23
139 rdf:type schema:Person
140 sg:pub.10.1038/nbt1138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006647082
141 https://doi.org/10.1038/nbt1138
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nmat1403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013811063
144 https://doi.org/10.1038/nmat1403
145 rdf:type schema:CreativeWork
146 grid-institutes:grid.15447.33 schema:alternateName St. Petersburg State Electrotechnical University “LETI”, 197376, St. Petersburg, Russia
147 schema:name Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
148 St. Petersburg State Electrotechnical University “LETI”, 197376, St. Petersburg, Russia
149 rdf:type schema:Organization
150 grid-institutes:grid.35915.3b schema:alternateName St. Petersburg National Research University of Information Technologies, Mechanics, and Optics (ITMO), 197101, St. Petersburg, Russia
151 schema:name St. Petersburg National Research University of Information Technologies, Mechanics, and Optics (ITMO), 197101, St. Petersburg, Russia
152 rdf:type schema:Organization
153 grid-institutes:grid.423485.c schema:alternateName Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
154 schema:name Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
155 rdf:type schema:Organization
156 grid-institutes:grid.8385.6 schema:alternateName Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
157 schema:name Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...