Electron microscopy of GaAs Structures with InAs and as quantum dots View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-12

AUTHORS

V. N. Nevedomskii, N. A. Bert, V. V. Chaldyshev, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin

ABSTRACT

An electron-microscopy study of GaAs structures, grown by molecular-beam epitaxy, containing two coupled layers of InAs semiconductor quantum dots (QDs) overgrown with a thin buffer GaAs layer and a layer of low-temperature-grown gallium arsenide has been performed. In subsequent annealing, an array of As nanoinclusions (metallic QDs) was formed in the low-temperature-grown GaAs layer. The variation in the microstructure of the samples during temperature and annealing conditions was examined. It was found that, at comparatively low annealing temperatures (400–500°C), the formation of the As metallic QDs array weakly depends on whether InAs semiconductor QDs are present in the preceding layers or not. In this case, the As metallic QDs have a characteristic size of about 2–3 nm upon annealing at 400°C and 4–5 nm upon annealing at 500°C for 15 min. Annealing at 600°C for 15 min in the growth setup leads to a coarsening of the As metallic QDs to 8–9 nm and to the formation of groups of such QDs in the area of the low-temperature-grown GaAs which is directly adjacent to the buffer layer separating the InAs semiconductor QDs. A more prolonged annealing at an elevated temperature (760°C) in an atmosphere of hydrogen causes a further increase in the As metallic QDs’ size to 20–25 nm and their spatial displacement into the region between the coupled InAs semiconductor QDs. More... »

PAGES

1580-1582

Journal

TITLE

Semiconductors

ISSUE

12

VOLUME

45

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782611120104

DOI

http://dx.doi.org/10.1134/s1063782611120104

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046547303


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nevedomskii", 
        "givenName": "V. N.", 
        "id": "sg:person.014613351023.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014613351023.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bert", 
        "givenName": "N. A.", 
        "id": "sg:person.010314101551.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314101551.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chaldyshev", 
        "givenName": "V. V.", 
        "id": "sg:person.010716755351.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010716755351.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Preobrazhenskii", 
        "givenName": "V. V.", 
        "id": "sg:person.010664106542.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010664106542.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Putyato", 
        "givenName": "M. A.", 
        "id": "sg:person.015271274417.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015271274417.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Semyagin", 
        "givenName": "B. R.", 
        "id": "sg:person.011644303155.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644303155.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/adma.200703096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003202414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008213325", 
          "https://doi.org/10.1038/nphys1870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.146804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015469791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.146804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015469791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0268-1242/11/10/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018700698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026793563", 
          "https://doi.org/10.1038/nature08812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026793563", 
          "https://doi.org/10.1038/nature08812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782609120082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045685827", 
          "https://doi.org/10.1134/s1063782609120082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782609120082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045685827", 
          "https://doi.org/10.1134/s1063782609120082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2006.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047194243", 
          "https://doi.org/10.1038/nphoton.2006.49"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2006.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047194243", 
          "https://doi.org/10.1038/nphoton.2006.49"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047990558", 
          "https://doi.org/10.1038/nmat2629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047990558", 
          "https://doi.org/10.1038/nmat2629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jz101102e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056133632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jz101102e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056133632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2749303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057863287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.153105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060628030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.153105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060628030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.32.002125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065225176"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "An electron-microscopy study of GaAs structures, grown by molecular-beam epitaxy, containing two coupled layers of InAs semiconductor quantum dots (QDs) overgrown with a thin buffer GaAs layer and a layer of low-temperature-grown gallium arsenide has been performed. In subsequent annealing, an array of As nanoinclusions (metallic QDs) was formed in the low-temperature-grown GaAs layer. The variation in the microstructure of the samples during temperature and annealing conditions was examined. It was found that, at comparatively low annealing temperatures (400\u2013500\u00b0C), the formation of the As metallic QDs array weakly depends on whether InAs semiconductor QDs are present in the preceding layers or not. In this case, the As metallic QDs have a characteristic size of about 2\u20133 nm upon annealing at 400\u00b0C and 4\u20135 nm upon annealing at 500\u00b0C for 15 min. Annealing at 600\u00b0C for 15 min in the growth setup leads to a coarsening of the As metallic QDs to 8\u20139 nm and to the formation of groups of such QDs in the area of the low-temperature-grown GaAs which is directly adjacent to the buffer layer separating the InAs semiconductor QDs. A more prolonged annealing at an elevated temperature (760\u00b0C) in an atmosphere of hydrogen causes a further increase in the As metallic QDs\u2019 size to 20\u201325 nm and their spatial displacement into the region between the coupled InAs semiconductor QDs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063782611120104", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "name": "Electron microscopy of GaAs Structures with InAs and as quantum dots", 
    "pagination": "1580-1582", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ddbbdeab7d3f4b9348bd08d94cf56588b8f52a22b07552ca132307dac2b1c7c5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782611120104"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046547303"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782611120104", 
      "https://app.dimensions.ai/details/publication/pub.1046547303"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS1063782611120104"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782611120104'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782611120104'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782611120104'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782611120104'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782611120104 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nba36658d2b004e1aa7c36bb155941529
4 schema:citation sg:pub.10.1038/nature08812
5 sg:pub.10.1038/nmat2629
6 sg:pub.10.1038/nphoton.2006.49
7 sg:pub.10.1038/nphys1870
8 sg:pub.10.1134/s1063782609120082
9 https://doi.org/10.1002/adma.200703096
10 https://doi.org/10.1021/jz101102e
11 https://doi.org/10.1063/1.2749303
12 https://doi.org/10.1088/0268-1242/11/10/004
13 https://doi.org/10.1103/physrevb.79.153105
14 https://doi.org/10.1103/physrevlett.97.146804
15 https://doi.org/10.1364/ol.32.002125
16 schema:datePublished 2011-12
17 schema:datePublishedReg 2011-12-01
18 schema:description An electron-microscopy study of GaAs structures, grown by molecular-beam epitaxy, containing two coupled layers of InAs semiconductor quantum dots (QDs) overgrown with a thin buffer GaAs layer and a layer of low-temperature-grown gallium arsenide has been performed. In subsequent annealing, an array of As nanoinclusions (metallic QDs) was formed in the low-temperature-grown GaAs layer. The variation in the microstructure of the samples during temperature and annealing conditions was examined. It was found that, at comparatively low annealing temperatures (400–500°C), the formation of the As metallic QDs array weakly depends on whether InAs semiconductor QDs are present in the preceding layers or not. In this case, the As metallic QDs have a characteristic size of about 2–3 nm upon annealing at 400°C and 4–5 nm upon annealing at 500°C for 15 min. Annealing at 600°C for 15 min in the growth setup leads to a coarsening of the As metallic QDs to 8–9 nm and to the formation of groups of such QDs in the area of the low-temperature-grown GaAs which is directly adjacent to the buffer layer separating the InAs semiconductor QDs. A more prolonged annealing at an elevated temperature (760°C) in an atmosphere of hydrogen causes a further increase in the As metallic QDs’ size to 20–25 nm and their spatial displacement into the region between the coupled InAs semiconductor QDs.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N297d166f3e054af79b248d35590e28b9
23 N86ee9615f98445e7bd3ad82826996534
24 sg:journal.1136692
25 schema:name Electron microscopy of GaAs Structures with InAs and as quantum dots
26 schema:pagination 1580-1582
27 schema:productId N036e1193f5a44756b7e46d14df5efd8c
28 N088a69eca9fd418a90aab0717a9e3ee1
29 N0c0fc00bb4174360a0eee89237d1c14a
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046547303
31 https://doi.org/10.1134/s1063782611120104
32 schema:sdDatePublished 2019-04-10T19:07
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Ne2a04757bdca4d6eb6c05478d08b16a9
35 schema:url http://link.springer.com/10.1134%2FS1063782611120104
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N036e1193f5a44756b7e46d14df5efd8c schema:name readcube_id
40 schema:value ddbbdeab7d3f4b9348bd08d94cf56588b8f52a22b07552ca132307dac2b1c7c5
41 rdf:type schema:PropertyValue
42 N088a69eca9fd418a90aab0717a9e3ee1 schema:name doi
43 schema:value 10.1134/s1063782611120104
44 rdf:type schema:PropertyValue
45 N0c0fc00bb4174360a0eee89237d1c14a schema:name dimensions_id
46 schema:value pub.1046547303
47 rdf:type schema:PropertyValue
48 N297d166f3e054af79b248d35590e28b9 schema:volumeNumber 45
49 rdf:type schema:PublicationVolume
50 N33415b81d87b43d2824d9209f9291f3e rdf:first sg:person.015271274417.07
51 rdf:rest N3b1cf46b227c48a49631d080293c2e9f
52 N3b1cf46b227c48a49631d080293c2e9f rdf:first sg:person.011644303155.87
53 rdf:rest rdf:nil
54 N46f0bb82d6984b27aff1cf1d39103c8c rdf:first sg:person.010314101551.02
55 rdf:rest N8df138f314884131b485369946cd17ad
56 N751da549d9b54ffba674788ed87221d6 rdf:first sg:person.010664106542.73
57 rdf:rest N33415b81d87b43d2824d9209f9291f3e
58 N86ee9615f98445e7bd3ad82826996534 schema:issueNumber 12
59 rdf:type schema:PublicationIssue
60 N8df138f314884131b485369946cd17ad rdf:first sg:person.010716755351.29
61 rdf:rest N751da549d9b54ffba674788ed87221d6
62 Nba36658d2b004e1aa7c36bb155941529 rdf:first sg:person.014613351023.20
63 rdf:rest N46f0bb82d6984b27aff1cf1d39103c8c
64 Ne2a04757bdca4d6eb6c05478d08b16a9 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
67 schema:name Engineering
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
70 schema:name Materials Engineering
71 rdf:type schema:DefinedTerm
72 sg:journal.1136692 schema:issn 1063-7826
73 1090-6479
74 schema:name Semiconductors
75 rdf:type schema:Periodical
76 sg:person.010314101551.02 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
77 schema:familyName Bert
78 schema:givenName N. A.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314101551.02
80 rdf:type schema:Person
81 sg:person.010664106542.73 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
82 schema:familyName Preobrazhenskii
83 schema:givenName V. V.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010664106542.73
85 rdf:type schema:Person
86 sg:person.010716755351.29 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
87 schema:familyName Chaldyshev
88 schema:givenName V. V.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010716755351.29
90 rdf:type schema:Person
91 sg:person.011644303155.87 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
92 schema:familyName Semyagin
93 schema:givenName B. R.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644303155.87
95 rdf:type schema:Person
96 sg:person.014613351023.20 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
97 schema:familyName Nevedomskii
98 schema:givenName V. N.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014613351023.20
100 rdf:type schema:Person
101 sg:person.015271274417.07 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
102 schema:familyName Putyato
103 schema:givenName M. A.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015271274417.07
105 rdf:type schema:Person
106 sg:pub.10.1038/nature08812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026793563
107 https://doi.org/10.1038/nature08812
108 rdf:type schema:CreativeWork
109 sg:pub.10.1038/nmat2629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047990558
110 https://doi.org/10.1038/nmat2629
111 rdf:type schema:CreativeWork
112 sg:pub.10.1038/nphoton.2006.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047194243
113 https://doi.org/10.1038/nphoton.2006.49
114 rdf:type schema:CreativeWork
115 sg:pub.10.1038/nphys1870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008213325
116 https://doi.org/10.1038/nphys1870
117 rdf:type schema:CreativeWork
118 sg:pub.10.1134/s1063782609120082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045685827
119 https://doi.org/10.1134/s1063782609120082
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1002/adma.200703096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003202414
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1021/jz101102e schema:sameAs https://app.dimensions.ai/details/publication/pub.1056133632
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1063/1.2749303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057863287
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1088/0268-1242/11/10/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018700698
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevb.79.153105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060628030
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevlett.97.146804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015469791
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1364/ol.32.002125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065225176
134 rdf:type schema:CreativeWork
135 https://www.grid.ac/institutes/grid.423485.c schema:alternateName Ioffe Institute
136 schema:name Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
137 rdf:type schema:Organization
138 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
139 schema:name Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...