Electron microscopy of GaAs Structures with InAs and as quantum dots View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-12

AUTHORS

V. N. Nevedomskii, N. A. Bert, V. V. Chaldyshev, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin

ABSTRACT

An electron-microscopy study of GaAs structures, grown by molecular-beam epitaxy, containing two coupled layers of InAs semiconductor quantum dots (QDs) overgrown with a thin buffer GaAs layer and a layer of low-temperature-grown gallium arsenide has been performed. In subsequent annealing, an array of As nanoinclusions (metallic QDs) was formed in the low-temperature-grown GaAs layer. The variation in the microstructure of the samples during temperature and annealing conditions was examined. It was found that, at comparatively low annealing temperatures (400–500°C), the formation of the As metallic QDs array weakly depends on whether InAs semiconductor QDs are present in the preceding layers or not. In this case, the As metallic QDs have a characteristic size of about 2–3 nm upon annealing at 400°C and 4–5 nm upon annealing at 500°C for 15 min. Annealing at 600°C for 15 min in the growth setup leads to a coarsening of the As metallic QDs to 8–9 nm and to the formation of groups of such QDs in the area of the low-temperature-grown GaAs which is directly adjacent to the buffer layer separating the InAs semiconductor QDs. A more prolonged annealing at an elevated temperature (760°C) in an atmosphere of hydrogen causes a further increase in the As metallic QDs’ size to 20–25 nm and their spatial displacement into the region between the coupled InAs semiconductor QDs. More... »

PAGES

1580-1582

Journal

TITLE

Semiconductors

ISSUE

12

VOLUME

45

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782611120104

DOI

http://dx.doi.org/10.1134/s1063782611120104

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046547303


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nevedomskii", 
        "givenName": "V. N.", 
        "id": "sg:person.014613351023.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014613351023.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bert", 
        "givenName": "N. A.", 
        "id": "sg:person.010314101551.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314101551.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chaldyshev", 
        "givenName": "V. V.", 
        "id": "sg:person.010716755351.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010716755351.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Preobrazhenskii", 
        "givenName": "V. V.", 
        "id": "sg:person.010664106542.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010664106542.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Putyato", 
        "givenName": "M. A.", 
        "id": "sg:person.015271274417.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015271274417.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Semyagin", 
        "givenName": "B. R.", 
        "id": "sg:person.011644303155.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644303155.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/adma.200703096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003202414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008213325", 
          "https://doi.org/10.1038/nphys1870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.146804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015469791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.146804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015469791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0268-1242/11/10/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018700698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026793563", 
          "https://doi.org/10.1038/nature08812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026793563", 
          "https://doi.org/10.1038/nature08812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782609120082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045685827", 
          "https://doi.org/10.1134/s1063782609120082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782609120082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045685827", 
          "https://doi.org/10.1134/s1063782609120082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2006.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047194243", 
          "https://doi.org/10.1038/nphoton.2006.49"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2006.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047194243", 
          "https://doi.org/10.1038/nphoton.2006.49"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047990558", 
          "https://doi.org/10.1038/nmat2629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047990558", 
          "https://doi.org/10.1038/nmat2629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jz101102e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056133632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jz101102e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056133632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2749303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057863287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.153105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060628030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.153105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060628030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.32.002125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065225176"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-12", 
    "datePublishedReg": "2011-12-01", 
    "description": "An electron-microscopy study of GaAs structures, grown by molecular-beam epitaxy, containing two coupled layers of InAs semiconductor quantum dots (QDs) overgrown with a thin buffer GaAs layer and a layer of low-temperature-grown gallium arsenide has been performed. In subsequent annealing, an array of As nanoinclusions (metallic QDs) was formed in the low-temperature-grown GaAs layer. The variation in the microstructure of the samples during temperature and annealing conditions was examined. It was found that, at comparatively low annealing temperatures (400\u2013500\u00b0C), the formation of the As metallic QDs array weakly depends on whether InAs semiconductor QDs are present in the preceding layers or not. In this case, the As metallic QDs have a characteristic size of about 2\u20133 nm upon annealing at 400\u00b0C and 4\u20135 nm upon annealing at 500\u00b0C for 15 min. Annealing at 600\u00b0C for 15 min in the growth setup leads to a coarsening of the As metallic QDs to 8\u20139 nm and to the formation of groups of such QDs in the area of the low-temperature-grown GaAs which is directly adjacent to the buffer layer separating the InAs semiconductor QDs. A more prolonged annealing at an elevated temperature (760\u00b0C) in an atmosphere of hydrogen causes a further increase in the As metallic QDs\u2019 size to 20\u201325 nm and their spatial displacement into the region between the coupled InAs semiconductor QDs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063782611120104", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "name": "Electron microscopy of GaAs Structures with InAs and as quantum dots", 
    "pagination": "1580-1582", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ddbbdeab7d3f4b9348bd08d94cf56588b8f52a22b07552ca132307dac2b1c7c5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782611120104"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046547303"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782611120104", 
      "https://app.dimensions.ai/details/publication/pub.1046547303"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS1063782611120104"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782611120104'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782611120104'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782611120104'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782611120104'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782611120104 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N1a258e6336f54fe582aaca7223291314
4 schema:citation sg:pub.10.1038/nature08812
5 sg:pub.10.1038/nmat2629
6 sg:pub.10.1038/nphoton.2006.49
7 sg:pub.10.1038/nphys1870
8 sg:pub.10.1134/s1063782609120082
9 https://doi.org/10.1002/adma.200703096
10 https://doi.org/10.1021/jz101102e
11 https://doi.org/10.1063/1.2749303
12 https://doi.org/10.1088/0268-1242/11/10/004
13 https://doi.org/10.1103/physrevb.79.153105
14 https://doi.org/10.1103/physrevlett.97.146804
15 https://doi.org/10.1364/ol.32.002125
16 schema:datePublished 2011-12
17 schema:datePublishedReg 2011-12-01
18 schema:description An electron-microscopy study of GaAs structures, grown by molecular-beam epitaxy, containing two coupled layers of InAs semiconductor quantum dots (QDs) overgrown with a thin buffer GaAs layer and a layer of low-temperature-grown gallium arsenide has been performed. In subsequent annealing, an array of As nanoinclusions (metallic QDs) was formed in the low-temperature-grown GaAs layer. The variation in the microstructure of the samples during temperature and annealing conditions was examined. It was found that, at comparatively low annealing temperatures (400–500°C), the formation of the As metallic QDs array weakly depends on whether InAs semiconductor QDs are present in the preceding layers or not. In this case, the As metallic QDs have a characteristic size of about 2–3 nm upon annealing at 400°C and 4–5 nm upon annealing at 500°C for 15 min. Annealing at 600°C for 15 min in the growth setup leads to a coarsening of the As metallic QDs to 8–9 nm and to the formation of groups of such QDs in the area of the low-temperature-grown GaAs which is directly adjacent to the buffer layer separating the InAs semiconductor QDs. A more prolonged annealing at an elevated temperature (760°C) in an atmosphere of hydrogen causes a further increase in the As metallic QDs’ size to 20–25 nm and their spatial displacement into the region between the coupled InAs semiconductor QDs.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N119f6a881ff14b66adf11b773d1b5660
23 N9561b85d62374fe89e67ba4a15933581
24 sg:journal.1136692
25 schema:name Electron microscopy of GaAs Structures with InAs and as quantum dots
26 schema:pagination 1580-1582
27 schema:productId N93a956e31c064346a2fc2399fd149360
28 Nc2e2ea7ef8ec41f292219fcbd9cda56a
29 Nf186d0b0cb5c4c598a0b9f88e365ade9
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046547303
31 https://doi.org/10.1134/s1063782611120104
32 schema:sdDatePublished 2019-04-10T19:07
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N223684bda5d24714a6f5a85e65e175b1
35 schema:url http://link.springer.com/10.1134%2FS1063782611120104
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N119f6a881ff14b66adf11b773d1b5660 schema:volumeNumber 45
40 rdf:type schema:PublicationVolume
41 N1a258e6336f54fe582aaca7223291314 rdf:first sg:person.014613351023.20
42 rdf:rest N4a0237ff293641d49e8e22a311cdcf35
43 N223684bda5d24714a6f5a85e65e175b1 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N4a0237ff293641d49e8e22a311cdcf35 rdf:first sg:person.010314101551.02
46 rdf:rest N6074a056928746d3823648984fd1a34c
47 N5f29720f1da4431eb848faede5d44b2b rdf:first sg:person.011644303155.87
48 rdf:rest rdf:nil
49 N6074a056928746d3823648984fd1a34c rdf:first sg:person.010716755351.29
50 rdf:rest N62b61b6133cc425ab9958027a3f1945c
51 N62b61b6133cc425ab9958027a3f1945c rdf:first sg:person.010664106542.73
52 rdf:rest Ne68b2e77e1744bd6830cfc9d35cd3081
53 N93a956e31c064346a2fc2399fd149360 schema:name doi
54 schema:value 10.1134/s1063782611120104
55 rdf:type schema:PropertyValue
56 N9561b85d62374fe89e67ba4a15933581 schema:issueNumber 12
57 rdf:type schema:PublicationIssue
58 Nc2e2ea7ef8ec41f292219fcbd9cda56a schema:name readcube_id
59 schema:value ddbbdeab7d3f4b9348bd08d94cf56588b8f52a22b07552ca132307dac2b1c7c5
60 rdf:type schema:PropertyValue
61 Ne68b2e77e1744bd6830cfc9d35cd3081 rdf:first sg:person.015271274417.07
62 rdf:rest N5f29720f1da4431eb848faede5d44b2b
63 Nf186d0b0cb5c4c598a0b9f88e365ade9 schema:name dimensions_id
64 schema:value pub.1046547303
65 rdf:type schema:PropertyValue
66 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
67 schema:name Engineering
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
70 schema:name Materials Engineering
71 rdf:type schema:DefinedTerm
72 sg:journal.1136692 schema:issn 1063-7826
73 1090-6479
74 schema:name Semiconductors
75 rdf:type schema:Periodical
76 sg:person.010314101551.02 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
77 schema:familyName Bert
78 schema:givenName N. A.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314101551.02
80 rdf:type schema:Person
81 sg:person.010664106542.73 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
82 schema:familyName Preobrazhenskii
83 schema:givenName V. V.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010664106542.73
85 rdf:type schema:Person
86 sg:person.010716755351.29 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
87 schema:familyName Chaldyshev
88 schema:givenName V. V.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010716755351.29
90 rdf:type schema:Person
91 sg:person.011644303155.87 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
92 schema:familyName Semyagin
93 schema:givenName B. R.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011644303155.87
95 rdf:type schema:Person
96 sg:person.014613351023.20 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
97 schema:familyName Nevedomskii
98 schema:givenName V. N.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014613351023.20
100 rdf:type schema:Person
101 sg:person.015271274417.07 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
102 schema:familyName Putyato
103 schema:givenName M. A.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015271274417.07
105 rdf:type schema:Person
106 sg:pub.10.1038/nature08812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026793563
107 https://doi.org/10.1038/nature08812
108 rdf:type schema:CreativeWork
109 sg:pub.10.1038/nmat2629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047990558
110 https://doi.org/10.1038/nmat2629
111 rdf:type schema:CreativeWork
112 sg:pub.10.1038/nphoton.2006.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047194243
113 https://doi.org/10.1038/nphoton.2006.49
114 rdf:type schema:CreativeWork
115 sg:pub.10.1038/nphys1870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008213325
116 https://doi.org/10.1038/nphys1870
117 rdf:type schema:CreativeWork
118 sg:pub.10.1134/s1063782609120082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045685827
119 https://doi.org/10.1134/s1063782609120082
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1002/adma.200703096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003202414
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1021/jz101102e schema:sameAs https://app.dimensions.ai/details/publication/pub.1056133632
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1063/1.2749303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057863287
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1088/0268-1242/11/10/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018700698
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevb.79.153105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060628030
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevlett.97.146804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015469791
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1364/ol.32.002125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065225176
134 rdf:type schema:CreativeWork
135 https://www.grid.ac/institutes/grid.423485.c schema:alternateName Ioffe Institute
136 schema:name Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
137 rdf:type schema:Organization
138 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
139 schema:name Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...