Defects in the crystal structure of CdxHg1 − xTe layers grown on the Si (310) substrates View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-07-08

AUTHORS

M. V. Yakushev, A. K. Gutakovsky, I. V. Sabinina, Yu. G. Sidorov

ABSTRACT

Microstructure of the CdTe (310) and CdHgTe (310) layers grown by molecular-beam epitaxy on Si substrates has been studied by the methods of transmission electron microscopy and selective etching. It is established that formation of antiphase domains in the CdHgTe/CdTe/ZnTe/Si(310) is determined by the conditions of formation of the ZnTe/Si interface. Monodomain layers can be obtained by providing conditions that enhance zinc adsorption. An increase in the growth temperature and in the pressure of Te2 vapors gives rise to antiphase domains and induces an increase in their density to the extent of the growth of poly-crystals. It is found that stacking faults exist in a CdHgTe/Si(310) heterostructure; these defects are anisotropically distributed in the bulk of grown layers. The stacking faults are predominantly located in one (111) plane, which intersects the (310) surface at an angle of 68°. The stacking faults originate at the ZnTe/Si(310) interface. The causes of origination of stacking faults and of their anisotropic distribution are discussed. More... »

PAGES

926-934

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782611070232

DOI

http://dx.doi.org/10.1134/s1063782611070232

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018900034


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yakushev", 
        "givenName": "M. V.", 
        "id": "sg:person.012212531345.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212531345.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gutakovsky", 
        "givenName": "A. K.", 
        "id": "sg:person.015512574007.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015512574007.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sabinina", 
        "givenName": "I. V.", 
        "id": "sg:person.07622314606.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07622314606.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sidorov", 
        "givenName": "Yu. G.", 
        "id": "sg:person.016143266225.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016143266225.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11664-997-0088-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050635920", 
          "https://doi.org/10.1007/s11664-997-0088-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:jmsc.0000012966.19192.85", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047330916", 
          "https://doi.org/10.1023/b:jmsc.0000012966.19192.85"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02665842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030257631", 
          "https://doi.org/10.1007/bf02665842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-006-0256-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023268865", 
          "https://doi.org/10.1007/s11664-006-0256-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-07-08", 
    "datePublishedReg": "2011-07-08", 
    "description": "Microstructure of the CdTe (310) and CdHgTe (310) layers grown by molecular-beam epitaxy on Si substrates has been studied by the methods of transmission electron microscopy and selective etching. It is established that formation of antiphase domains in the CdHgTe/CdTe/ZnTe/Si(310) is determined by the conditions of formation of the ZnTe/Si interface. Monodomain layers can be obtained by providing conditions that enhance zinc adsorption. An increase in the growth temperature and in the pressure of Te2 vapors gives rise to antiphase domains and induces an increase in their density to the extent of the growth of poly-crystals. It is found that stacking faults exist in a CdHgTe/Si(310) heterostructure; these defects are anisotropically distributed in the bulk of grown layers. The stacking faults are predominantly located in one (111) plane, which intersects the (310) surface at an angle of 68\u00b0. The stacking faults originate at the ZnTe/Si(310) interface. The causes of origination of stacking faults and of their anisotropic distribution are discussed.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063782611070232", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "keywords": [
      "Si substrate", 
      "CdTe/ZnTe/", 
      "ZnTe/", 
      "molecular beam epitaxy", 
      "Si interface", 
      "CdHgTe layers", 
      "grown layers", 
      "selective etching", 
      "transmission electron microscopy", 
      "layer", 
      "electron microscopy", 
      "growth temperature", 
      "faults", 
      "antiphase domains", 
      "zinc adsorption", 
      "interface", 
      "anisotropic distribution", 
      "microstructure", 
      "conditions of formation", 
      "substrate", 
      "epitaxy", 
      "heterostructures", 
      "etching", 
      "CdxHg1", 
      "CdTe", 
      "vapor", 
      "Te2 vapours", 
      "adsorption", 
      "temperature", 
      "surface", 
      "conditions", 
      "microscopy", 
      "angle", 
      "defects", 
      "bulk", 
      "density", 
      "formation", 
      "pressure", 
      "plane", 
      "structure", 
      "increase", 
      "method", 
      "distribution", 
      "crystal structure", 
      "domain", 
      "growth", 
      "origination", 
      "extent", 
      "cause"
    ], 
    "name": "Defects in the crystal structure of CdxHg1 \u2212 xTe layers grown on the Si (310) substrates", 
    "pagination": "926-934", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018900034"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782611070232"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782611070232", 
      "https://app.dimensions.ai/details/publication/pub.1018900034"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_529.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063782611070232"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782611070232'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782611070232'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782611070232'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782611070232'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      22 PREDICATES      79 URIs      66 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782611070232 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 anzsrc-for:0206
4 schema:author N5f500e81550142258e6dca8811fb9a5a
5 schema:citation sg:pub.10.1007/bf02665842
6 sg:pub.10.1007/s11664-006-0256-0
7 sg:pub.10.1007/s11664-997-0088-6
8 sg:pub.10.1023/b:jmsc.0000012966.19192.85
9 schema:datePublished 2011-07-08
10 schema:datePublishedReg 2011-07-08
11 schema:description Microstructure of the CdTe (310) and CdHgTe (310) layers grown by molecular-beam epitaxy on Si substrates has been studied by the methods of transmission electron microscopy and selective etching. It is established that formation of antiphase domains in the CdHgTe/CdTe/ZnTe/Si(310) is determined by the conditions of formation of the ZnTe/Si interface. Monodomain layers can be obtained by providing conditions that enhance zinc adsorption. An increase in the growth temperature and in the pressure of Te2 vapors gives rise to antiphase domains and induces an increase in their density to the extent of the growth of poly-crystals. It is found that stacking faults exist in a CdHgTe/Si(310) heterostructure; these defects are anisotropically distributed in the bulk of grown layers. The stacking faults are predominantly located in one (111) plane, which intersects the (310) surface at an angle of 68°. The stacking faults originate at the ZnTe/Si(310) interface. The causes of origination of stacking faults and of their anisotropic distribution are discussed.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N33ccdce8011f465ea381c2d4f4bfb3c3
16 Nf56136df25fe45bbb47405bae93dbbc1
17 sg:journal.1136692
18 schema:keywords CdHgTe layers
19 CdTe
20 CdTe/ZnTe/
21 CdxHg1
22 Si interface
23 Si substrate
24 Te2 vapours
25 ZnTe/
26 adsorption
27 angle
28 anisotropic distribution
29 antiphase domains
30 bulk
31 cause
32 conditions
33 conditions of formation
34 crystal structure
35 defects
36 density
37 distribution
38 domain
39 electron microscopy
40 epitaxy
41 etching
42 extent
43 faults
44 formation
45 grown layers
46 growth
47 growth temperature
48 heterostructures
49 increase
50 interface
51 layer
52 method
53 microscopy
54 microstructure
55 molecular beam epitaxy
56 origination
57 plane
58 pressure
59 selective etching
60 structure
61 substrate
62 surface
63 temperature
64 transmission electron microscopy
65 vapor
66 zinc adsorption
67 schema:name Defects in the crystal structure of CdxHg1 − xTe layers grown on the Si (310) substrates
68 schema:pagination 926-934
69 schema:productId N35c7d1dcdde34fb785e8f4ef7632ed0c
70 N7ab49114677e49f5af6b50b3bc996a02
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018900034
72 https://doi.org/10.1134/s1063782611070232
73 schema:sdDatePublished 2022-05-10T10:04
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher Nba0f348bbfeb4cc0836f4b7be2af9795
76 schema:url https://doi.org/10.1134/s1063782611070232
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N02d75bd9f0a240b1b4154fb0b5bce3c1 rdf:first sg:person.07622314606.37
81 rdf:rest N84aa46e5e6a74c5bbe971cdf25520db9
82 N33ccdce8011f465ea381c2d4f4bfb3c3 schema:issueNumber 7
83 rdf:type schema:PublicationIssue
84 N35c7d1dcdde34fb785e8f4ef7632ed0c schema:name dimensions_id
85 schema:value pub.1018900034
86 rdf:type schema:PropertyValue
87 N5db9ce50f29a4201beb89f1efadd65d8 rdf:first sg:person.015512574007.11
88 rdf:rest N02d75bd9f0a240b1b4154fb0b5bce3c1
89 N5f500e81550142258e6dca8811fb9a5a rdf:first sg:person.012212531345.29
90 rdf:rest N5db9ce50f29a4201beb89f1efadd65d8
91 N7ab49114677e49f5af6b50b3bc996a02 schema:name doi
92 schema:value 10.1134/s1063782611070232
93 rdf:type schema:PropertyValue
94 N84aa46e5e6a74c5bbe971cdf25520db9 rdf:first sg:person.016143266225.90
95 rdf:rest rdf:nil
96 Nba0f348bbfeb4cc0836f4b7be2af9795 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 Nf56136df25fe45bbb47405bae93dbbc1 schema:volumeNumber 45
99 rdf:type schema:PublicationVolume
100 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
101 schema:name Physical Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
104 schema:name Condensed Matter Physics
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
107 schema:name Quantum Physics
108 rdf:type schema:DefinedTerm
109 sg:journal.1136692 schema:issn 1063-7826
110 1090-6479
111 schema:name Semiconductors
112 schema:publisher Pleiades Publishing
113 rdf:type schema:Periodical
114 sg:person.012212531345.29 schema:affiliation grid-institutes:grid.415877.8
115 schema:familyName Yakushev
116 schema:givenName M. V.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212531345.29
118 rdf:type schema:Person
119 sg:person.015512574007.11 schema:affiliation grid-institutes:grid.415877.8
120 schema:familyName Gutakovsky
121 schema:givenName A. K.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015512574007.11
123 rdf:type schema:Person
124 sg:person.016143266225.90 schema:affiliation grid-institutes:grid.415877.8
125 schema:familyName Sidorov
126 schema:givenName Yu. G.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016143266225.90
128 rdf:type schema:Person
129 sg:person.07622314606.37 schema:affiliation grid-institutes:grid.415877.8
130 schema:familyName Sabinina
131 schema:givenName I. V.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07622314606.37
133 rdf:type schema:Person
134 sg:pub.10.1007/bf02665842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030257631
135 https://doi.org/10.1007/bf02665842
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s11664-006-0256-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023268865
138 https://doi.org/10.1007/s11664-006-0256-0
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s11664-997-0088-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050635920
141 https://doi.org/10.1007/s11664-997-0088-6
142 rdf:type schema:CreativeWork
143 sg:pub.10.1023/b:jmsc.0000012966.19192.85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047330916
144 https://doi.org/10.1023/b:jmsc.0000012966.19192.85
145 rdf:type schema:CreativeWork
146 grid-institutes:grid.415877.8 schema:alternateName Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
147 schema:name Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...