Vacancy model of micropipe annihilation in epitaxial silicon carbide layers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-06-18

AUTHORS

S. Yu. Davydov, A. A. Lebedev

ABSTRACT

Kinetic processes of annihilation (healing) of a micropipe threading into a growing layer from a substrate-seed are considered in terms of the vacancy model of heteropolytype epitaxy of silicon carbide we previously suggested (Fiz. Tekh. Poluprovodn., 39, 296 (2005); 41, 641 (2007)). A relationship is found between the growth rate of an epitaxial film, vacancy lifetime, and defect layer width at which the micropipe is healed. Both kinds of vacancies, of carbon and silicon type, are taken into account. In addition, a simplified linear model of the process of micropipe healing is suggested. The relationship between the micropipe diameter r0 and the defect layer width l* is determined in terms of this model: l* = r0(G/g), where G is the layer growth rate and g is the vacancy velocity, which yields l* ≈ 6r0 for actual growth conditions. More... »

PAGES

727

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s106378261106008x

DOI

http://dx.doi.org/10.1134/s106378261106008x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001631800


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Davydov", 
        "givenName": "S. Yu.", 
        "id": "sg:person.015633711655.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015633711655.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lebedev", 
        "givenName": "A. A.", 
        "id": "sg:person.011264364575.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011264364575.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1557/jmr.1994.0940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016825731", 
          "https://doi.org/10.1557/jmr.1994.0940"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-06-18", 
    "datePublishedReg": "2011-06-18", 
    "description": "Kinetic processes of annihilation (healing) of a micropipe threading into a growing layer from a substrate-seed are considered in terms of the vacancy model of heteropolytype epitaxy of silicon carbide we previously suggested (Fiz. Tekh. Poluprovodn., 39, 296 (2005); 41, 641 (2007)). A relationship is found between the growth rate of an epitaxial film, vacancy lifetime, and defect layer width at which the micropipe is healed. Both kinds of vacancies, of carbon and silicon type, are taken into account. In addition, a simplified linear model of the process of micropipe healing is suggested. The relationship between the micropipe diameter r0 and the defect layer width l* is determined in terms of this model: l* = r0(G/g), where G is the layer growth rate and g is the vacancy velocity, which yields l* \u2248 6r0 for actual growth conditions.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s106378261106008x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "keywords": [
      "epitaxial silicon carbide layers", 
      "silicon carbide layers", 
      "layer width", 
      "layer growth rate", 
      "carbide layer", 
      "silicon carbide", 
      "epitaxial films", 
      "silicon type", 
      "actual growth conditions", 
      "micropipes", 
      "vacancy model", 
      "layer", 
      "kinetic processes", 
      "carbide", 
      "films", 
      "growth rate", 
      "width", 
      "velocity", 
      "process", 
      "model", 
      "epitaxy", 
      "vacancy lifetime", 
      "growth conditions", 
      "carbon", 
      "kinds of vacancies", 
      "vacancies", 
      "lifetime", 
      "conditions", 
      "rate", 
      "linear model", 
      "terms", 
      "kind", 
      "annihilation", 
      "account", 
      "addition", 
      "types", 
      "relationship", 
      "healing", 
      "R0", 
      "heteropolytype epitaxy", 
      "defect layer width", 
      "micropipe healing", 
      "micropipe diameter r0", 
      "diameter r0", 
      "vacancy velocity", 
      "micropipe annihilation"
    ], 
    "name": "Vacancy model of micropipe annihilation in epitaxial silicon carbide layers", 
    "pagination": "727", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001631800"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s106378261106008x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s106378261106008x", 
      "https://app.dimensions.ai/details/publication/pub.1001631800"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_548.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s106378261106008x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s106378261106008x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s106378261106008x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s106378261106008x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s106378261106008x'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      22 PREDICATES      73 URIs      63 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s106378261106008x schema:about anzsrc-for:02
2 anzsrc-for:0204
3 anzsrc-for:0206
4 schema:author Nbf9ffbb91af5448ca2b2fa62a0941033
5 schema:citation sg:pub.10.1557/jmr.1994.0940
6 schema:datePublished 2011-06-18
7 schema:datePublishedReg 2011-06-18
8 schema:description Kinetic processes of annihilation (healing) of a micropipe threading into a growing layer from a substrate-seed are considered in terms of the vacancy model of heteropolytype epitaxy of silicon carbide we previously suggested (Fiz. Tekh. Poluprovodn., 39, 296 (2005); 41, 641 (2007)). A relationship is found between the growth rate of an epitaxial film, vacancy lifetime, and defect layer width at which the micropipe is healed. Both kinds of vacancies, of carbon and silicon type, are taken into account. In addition, a simplified linear model of the process of micropipe healing is suggested. The relationship between the micropipe diameter r0 and the defect layer width l* is determined in terms of this model: l* = r0(G/g), where G is the layer growth rate and g is the vacancy velocity, which yields l* ≈ 6r0 for actual growth conditions.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N82cb6752519c4f5b825203c5342e46bb
13 Nbc39276d7ce34f4eacbc667954e960ec
14 sg:journal.1136692
15 schema:keywords R0
16 account
17 actual growth conditions
18 addition
19 annihilation
20 carbide
21 carbide layer
22 carbon
23 conditions
24 defect layer width
25 diameter r0
26 epitaxial films
27 epitaxial silicon carbide layers
28 epitaxy
29 films
30 growth conditions
31 growth rate
32 healing
33 heteropolytype epitaxy
34 kind
35 kinds of vacancies
36 kinetic processes
37 layer
38 layer growth rate
39 layer width
40 lifetime
41 linear model
42 micropipe annihilation
43 micropipe diameter r0
44 micropipe healing
45 micropipes
46 model
47 process
48 rate
49 relationship
50 silicon carbide
51 silicon carbide layers
52 silicon type
53 terms
54 types
55 vacancies
56 vacancy lifetime
57 vacancy model
58 vacancy velocity
59 velocity
60 width
61 schema:name Vacancy model of micropipe annihilation in epitaxial silicon carbide layers
62 schema:pagination 727
63 schema:productId N2881b1e636ae46cfa7eb92c620646439
64 Ne5cc2e61c50640aba793befaa7d33dd7
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001631800
66 https://doi.org/10.1134/s106378261106008x
67 schema:sdDatePublished 2021-11-01T18:16
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher Nce0c9b21ecfa41339e37dc051aa133dd
70 schema:url https://doi.org/10.1134/s106378261106008x
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N2881b1e636ae46cfa7eb92c620646439 schema:name dimensions_id
75 schema:value pub.1001631800
76 rdf:type schema:PropertyValue
77 N82cb6752519c4f5b825203c5342e46bb schema:issueNumber 6
78 rdf:type schema:PublicationIssue
79 Nbc39276d7ce34f4eacbc667954e960ec schema:volumeNumber 45
80 rdf:type schema:PublicationVolume
81 Nbf9ffbb91af5448ca2b2fa62a0941033 rdf:first sg:person.015633711655.34
82 rdf:rest Ncd9c49bf5d754c56a9fd17867f6e2555
83 Ncd9c49bf5d754c56a9fd17867f6e2555 rdf:first sg:person.011264364575.18
84 rdf:rest rdf:nil
85 Nce0c9b21ecfa41339e37dc051aa133dd schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Ne5cc2e61c50640aba793befaa7d33dd7 schema:name doi
88 schema:value 10.1134/s106378261106008x
89 rdf:type schema:PropertyValue
90 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
91 schema:name Physical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
94 schema:name Condensed Matter Physics
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
97 schema:name Quantum Physics
98 rdf:type schema:DefinedTerm
99 sg:journal.1136692 schema:issn 1063-7826
100 1090-6479
101 schema:name Semiconductors
102 schema:publisher Pleiades Publishing
103 rdf:type schema:Periodical
104 sg:person.011264364575.18 schema:affiliation grid-institutes:grid.423485.c
105 schema:familyName Lebedev
106 schema:givenName A. A.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011264364575.18
108 rdf:type schema:Person
109 sg:person.015633711655.34 schema:affiliation grid-institutes:grid.423485.c
110 schema:familyName Davydov
111 schema:givenName S. Yu.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015633711655.34
113 rdf:type schema:Person
114 sg:pub.10.1557/jmr.1994.0940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016825731
115 https://doi.org/10.1557/jmr.1994.0940
116 rdf:type schema:CreativeWork
117 grid-institutes:grid.423485.c schema:alternateName Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
118 schema:name Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...