Excitonic spectrum of the ZnO/ZnMgO quantum wells View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-06-18

AUTHORS

M. A. Bobrov, A. A. Toropov, S. V. Ivanov, A. El-Shaer, A. Bakin, A. Waag

ABSTRACT

Excitonic spectrum of the wurtzite ZnO/Zn1 − xMgxO quantum wells with a width on the order of or larger than the Bohr radius of the exciton has been studied; the quantum wells have been grown by the method of molecular beam epitaxy (with plasma-assisted activation of oxygen) on substrates of sapphire (0001). Low-temperature (25 K) spectra of photoluminescence excitation (PLE) have been experimentally measured, making it possible to resolve the peaks of exciton absorption in the quantum well. The spectrum of excitons in the quantum well is theoretically determined as a result of numerical solution of the Schrödinger equation by the variational method. The value of elastic stresses in the structure (used in calculations) has been determined from theoretical simulation of measured spectra of optical reflection. A comparison of experimental data with the results of calculations makes it possible to relate the observed features in the PLE spectra to excitons, including the lower level of dimensional quantization for electrons and two first levels of holes for the A and B valence bands of the wurtzite crystal. The values of the electron and hole masses in ZnO are refined, and the value of the built-in electric field introduced by spontaneous and piezoelectric polarizations is estimated. More... »

PAGES

766

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782611060042

DOI

http://dx.doi.org/10.1134/s1063782611060042

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047248294


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bobrov", 
        "givenName": "M. A.", 
        "id": "sg:person.016652543020.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016652543020.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toropov", 
        "givenName": "A. A.", 
        "id": "sg:person.010472630272.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010472630272.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ivanov", 
        "givenName": "S. V.", 
        "id": "sg:person.01064304443.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064304443.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Semiconductor Technology, TU Braunschweig, D-38106, Braunschweig, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6738.a", 
          "name": [
            "Institute of Semiconductor Technology, TU Braunschweig, D-38106, Braunschweig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "El-Shaer", 
        "givenName": "A.", 
        "id": "sg:person.07472567011.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07472567011.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Semiconductor Technology, TU Braunschweig, D-38106, Braunschweig, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6738.a", 
          "name": [
            "Institute of Semiconductor Technology, TU Braunschweig, D-38106, Braunschweig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bakin", 
        "givenName": "A.", 
        "id": "sg:person.01053455405.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053455405.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Semiconductor Technology, TU Braunschweig, D-38106, Braunschweig, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6738.a", 
          "name": [
            "Institute of Semiconductor Technology, TU Braunschweig, D-38106, Braunschweig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Waag", 
        "givenName": "A.", 
        "id": "sg:person.01046655025.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046655025.07"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011-06-18", 
    "datePublishedReg": "2011-06-18", 
    "description": "Excitonic spectrum of the wurtzite ZnO/Zn1 \u2212 xMgxO quantum wells with a width on the order of or larger than the Bohr radius of the exciton has been studied; the quantum wells have been grown by the method of molecular beam epitaxy (with plasma-assisted activation of oxygen) on substrates of sapphire (0001). Low-temperature (25 K) spectra of photoluminescence excitation (PLE) have been experimentally measured, making it possible to resolve the peaks of exciton absorption in the quantum well. The spectrum of excitons in the quantum well is theoretically determined as a result of numerical solution of the Schr\u00f6dinger equation by the variational method. The value of elastic stresses in the structure (used in calculations) has been determined from theoretical simulation of measured spectra of optical reflection. A comparison of experimental data with the results of calculations makes it possible to relate the observed features in the PLE spectra to excitons, including the lower level of dimensional quantization for electrons and two first levels of holes for the A and B valence bands of the wurtzite crystal. The values of the electron and hole masses in ZnO are refined, and the value of the built-in electric field introduced by spontaneous and piezoelectric polarizations is estimated.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063782611060042", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "keywords": [
      "quantum wells", 
      "ZnO/ZnMgO quantum wells", 
      "excitonic spectra", 
      "photoluminescence excitation", 
      "spectrum of excitons", 
      "molecular beam epitaxy", 
      "substrates of sapphire", 
      "dimensional quantization", 
      "hole mass", 
      "Bohr radius", 
      "optical reflection", 
      "beam epitaxy", 
      "exciton absorption", 
      "electric field", 
      "piezoelectric polarization", 
      "PLE spectra", 
      "wurtzite crystals", 
      "results of calculations", 
      "excitons", 
      "Schr\u00f6dinger equation", 
      "theoretical simulations", 
      "low-temperature spectra", 
      "valence band", 
      "observed features", 
      "quantum", 
      "electrons", 
      "spectra", 
      "variational method", 
      "wurtzite ZnO", 
      "wells", 
      "experimental data", 
      "ZnO", 
      "epitaxy", 
      "excitation", 
      "sapphire", 
      "polarization", 
      "holes", 
      "absorption", 
      "crystals", 
      "radius", 
      "calculations", 
      "width", 
      "quantization", 
      "field", 
      "elastic stresses", 
      "band", 
      "peak", 
      "substrate", 
      "numerical solution", 
      "mass", 
      "reflection", 
      "structure", 
      "simulations", 
      "equations", 
      "values", 
      "method", 
      "results", 
      "order", 
      "features", 
      "solution", 
      "comparison", 
      "data", 
      "levels", 
      "first level", 
      "stress", 
      "low levels", 
      "xMgxO quantum wells", 
      "ZnMgO quantum wells"
    ], 
    "name": "Excitonic spectrum of the ZnO/ZnMgO quantum wells", 
    "pagination": "766", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047248294"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782611060042"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782611060042", 
      "https://app.dimensions.ai/details/publication/pub.1047248294"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_553.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063782611060042"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782611060042'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782611060042'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782611060042'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782611060042'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      21 PREDICATES      94 URIs      85 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782611060042 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:0299
4 schema:author N7369a21ad7314f208940dd00dd73a75c
5 schema:datePublished 2011-06-18
6 schema:datePublishedReg 2011-06-18
7 schema:description Excitonic spectrum of the wurtzite ZnO/Zn1 − xMgxO quantum wells with a width on the order of or larger than the Bohr radius of the exciton has been studied; the quantum wells have been grown by the method of molecular beam epitaxy (with plasma-assisted activation of oxygen) on substrates of sapphire (0001). Low-temperature (25 K) spectra of photoluminescence excitation (PLE) have been experimentally measured, making it possible to resolve the peaks of exciton absorption in the quantum well. The spectrum of excitons in the quantum well is theoretically determined as a result of numerical solution of the Schrödinger equation by the variational method. The value of elastic stresses in the structure (used in calculations) has been determined from theoretical simulation of measured spectra of optical reflection. A comparison of experimental data with the results of calculations makes it possible to relate the observed features in the PLE spectra to excitons, including the lower level of dimensional quantization for electrons and two first levels of holes for the A and B valence bands of the wurtzite crystal. The values of the electron and hole masses in ZnO are refined, and the value of the built-in electric field introduced by spontaneous and piezoelectric polarizations is estimated.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N019491c362c9411aa8627c59f5dd1111
12 N32a2e49d991944109c6ebed74b28a4fe
13 sg:journal.1136692
14 schema:keywords Bohr radius
15 PLE spectra
16 Schrödinger equation
17 ZnMgO quantum wells
18 ZnO
19 ZnO/ZnMgO quantum wells
20 absorption
21 band
22 beam epitaxy
23 calculations
24 comparison
25 crystals
26 data
27 dimensional quantization
28 elastic stresses
29 electric field
30 electrons
31 epitaxy
32 equations
33 excitation
34 exciton absorption
35 excitonic spectra
36 excitons
37 experimental data
38 features
39 field
40 first level
41 hole mass
42 holes
43 levels
44 low levels
45 low-temperature spectra
46 mass
47 method
48 molecular beam epitaxy
49 numerical solution
50 observed features
51 optical reflection
52 order
53 peak
54 photoluminescence excitation
55 piezoelectric polarization
56 polarization
57 quantization
58 quantum
59 quantum wells
60 radius
61 reflection
62 results
63 results of calculations
64 sapphire
65 simulations
66 solution
67 spectra
68 spectrum of excitons
69 stress
70 structure
71 substrate
72 substrates of sapphire
73 theoretical simulations
74 valence band
75 values
76 variational method
77 wells
78 width
79 wurtzite ZnO
80 wurtzite crystals
81 xMgxO quantum wells
82 schema:name Excitonic spectrum of the ZnO/ZnMgO quantum wells
83 schema:pagination 766
84 schema:productId N929246f0e64d4840bf3a44bfc1505d82
85 Nd16552a2c2d141dfa96b6576220d6762
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047248294
87 https://doi.org/10.1134/s1063782611060042
88 schema:sdDatePublished 2021-11-01T18:17
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N5228925e5e3e49fe97d247ac01a0aece
91 schema:url https://doi.org/10.1134/s1063782611060042
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N019491c362c9411aa8627c59f5dd1111 schema:issueNumber 6
96 rdf:type schema:PublicationIssue
97 N32a2e49d991944109c6ebed74b28a4fe schema:volumeNumber 45
98 rdf:type schema:PublicationVolume
99 N33a1277d7a0d44bfbfb56b5cdbedaf8b rdf:first sg:person.01053455405.45
100 rdf:rest N6904b6bc4323442c97dfb6a27e13f4a3
101 N3a67e72093ff4a7cad86223402f4e516 rdf:first sg:person.010472630272.42
102 rdf:rest N6509b534e808461b91689eed2e94f247
103 N5228925e5e3e49fe97d247ac01a0aece schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 N6509b534e808461b91689eed2e94f247 rdf:first sg:person.01064304443.31
106 rdf:rest Ndce3b8f3d1a64c03b78651cb15a5bbd0
107 N6904b6bc4323442c97dfb6a27e13f4a3 rdf:first sg:person.01046655025.07
108 rdf:rest rdf:nil
109 N7369a21ad7314f208940dd00dd73a75c rdf:first sg:person.016652543020.09
110 rdf:rest N3a67e72093ff4a7cad86223402f4e516
111 N929246f0e64d4840bf3a44bfc1505d82 schema:name doi
112 schema:value 10.1134/s1063782611060042
113 rdf:type schema:PropertyValue
114 Nd16552a2c2d141dfa96b6576220d6762 schema:name dimensions_id
115 schema:value pub.1047248294
116 rdf:type schema:PropertyValue
117 Ndce3b8f3d1a64c03b78651cb15a5bbd0 rdf:first sg:person.07472567011.26
118 rdf:rest N33a1277d7a0d44bfbfb56b5cdbedaf8b
119 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
120 schema:name Physical Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
123 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
126 schema:name Other Physical Sciences
127 rdf:type schema:DefinedTerm
128 sg:journal.1136692 schema:issn 1063-7826
129 1090-6479
130 schema:name Semiconductors
131 schema:publisher Pleiades Publishing
132 rdf:type schema:Periodical
133 sg:person.01046655025.07 schema:affiliation grid-institutes:grid.6738.a
134 schema:familyName Waag
135 schema:givenName A.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046655025.07
137 rdf:type schema:Person
138 sg:person.010472630272.42 schema:affiliation grid-institutes:grid.423485.c
139 schema:familyName Toropov
140 schema:givenName A. A.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010472630272.42
142 rdf:type schema:Person
143 sg:person.01053455405.45 schema:affiliation grid-institutes:grid.6738.a
144 schema:familyName Bakin
145 schema:givenName A.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053455405.45
147 rdf:type schema:Person
148 sg:person.01064304443.31 schema:affiliation grid-institutes:grid.423485.c
149 schema:familyName Ivanov
150 schema:givenName S. V.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064304443.31
152 rdf:type schema:Person
153 sg:person.016652543020.09 schema:affiliation grid-institutes:grid.423485.c
154 schema:familyName Bobrov
155 schema:givenName M. A.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016652543020.09
157 rdf:type schema:Person
158 sg:person.07472567011.26 schema:affiliation grid-institutes:grid.6738.a
159 schema:familyName El-Shaer
160 schema:givenName A.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07472567011.26
162 rdf:type schema:Person
163 grid-institutes:grid.423485.c schema:alternateName Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
164 schema:name Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
165 rdf:type schema:Organization
166 grid-institutes:grid.6738.a schema:alternateName Institute of Semiconductor Technology, TU Braunschweig, D-38106, Braunschweig, Germany
167 schema:name Institute of Semiconductor Technology, TU Braunschweig, D-38106, Braunschweig, Germany
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...