On charge transfer in the adsorbed molecules-graphene monolayer-SiC substrate system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-05

AUTHORS

S. Yu. Davydov

ABSTRACT

A step-by-step consideration of charge transfer in the molecule-single-layer graphene-SiC substrate system is presented. At the first step, a simple model of the density of states of a single graphene monolayer adsorbed on silicon carbide (the graphene-SiC system) is suggested, which allows the calculation of the corresponding occupation numbers of graphene atoms. It is shown that the graphene monolayer accumulates a negative charge. At the second step, the graphene-SiC system is considered as a substrate that adsorbs molecules with a high electron affinity. The charge of these molecules as a function of their surface concentration is calculated. It is shown that, in the case of a monolayer coating, the negative surface charge density of molecules in the molecule-graphene monolayer-SiC substrate system is considerably higher than the surface charge density transferring from the SiC substrate to the graphene layer. This suggests that it is possible to neutralize the excess charge in the graphene layer via adsorption of proper particles on the layer. More... »

PAGES

618-622

Journal

TITLE

Semiconductors

ISSUE

5

VOLUME

45

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782611050083

DOI

http://dx.doi.org/10.1134/s1063782611050083

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014662327


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Davydov", 
        "givenName": "S. Yu.", 
        "id": "sg:person.015633711655.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015633711655.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0953-8984/21/40/402001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005489631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/21/40/402001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005489631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.235401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011421859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.235401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011421859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.246804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020363168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.246804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020363168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.076802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029063422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.076802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029063422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050408744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050408744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/7/15/012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058967160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.124.41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060424736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.124.41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060424736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.178.1123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060440614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.178.1123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060440614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.71.622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060453259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.71.622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060453259"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-05", 
    "datePublishedReg": "2011-05-01", 
    "description": "A step-by-step consideration of charge transfer in the molecule-single-layer graphene-SiC substrate system is presented. At the first step, a simple model of the density of states of a single graphene monolayer adsorbed on silicon carbide (the graphene-SiC system) is suggested, which allows the calculation of the corresponding occupation numbers of graphene atoms. It is shown that the graphene monolayer accumulates a negative charge. At the second step, the graphene-SiC system is considered as a substrate that adsorbs molecules with a high electron affinity. The charge of these molecules as a function of their surface concentration is calculated. It is shown that, in the case of a monolayer coating, the negative surface charge density of molecules in the molecule-graphene monolayer-SiC substrate system is considerably higher than the surface charge density transferring from the SiC substrate to the graphene layer. This suggests that it is possible to neutralize the excess charge in the graphene layer via adsorption of proper particles on the layer.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063782611050083", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "name": "On charge transfer in the adsorbed molecules-graphene monolayer-SiC substrate system", 
    "pagination": "618-622", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "45da9ec80c78c49c2d9335594c00a9db8bdb5eeb729bb70d89a611bba39ecd69"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782611050083"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014662327"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782611050083", 
      "https://app.dimensions.ai/details/publication/pub.1014662327"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000504.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS1063782611050083"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782611050083'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782611050083'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782611050083'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782611050083'


 

This table displays all metadata directly associated to this object as RDF triples.

88 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782611050083 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nbed7a2db3743454295a990d86a26f895
4 schema:citation https://doi.org/10.1088/0022-3719/7/15/012
5 https://doi.org/10.1088/0953-8984/21/40/402001
6 https://doi.org/10.1103/physrev.124.41
7 https://doi.org/10.1103/physrev.178.1123
8 https://doi.org/10.1103/physrev.71.622
9 https://doi.org/10.1103/physrevb.81.235401
10 https://doi.org/10.1103/physrevlett.103.246804
11 https://doi.org/10.1103/physrevlett.99.076802
12 https://doi.org/10.1103/revmodphys.81.109
13 schema:datePublished 2011-05
14 schema:datePublishedReg 2011-05-01
15 schema:description A step-by-step consideration of charge transfer in the molecule-single-layer graphene-SiC substrate system is presented. At the first step, a simple model of the density of states of a single graphene monolayer adsorbed on silicon carbide (the graphene-SiC system) is suggested, which allows the calculation of the corresponding occupation numbers of graphene atoms. It is shown that the graphene monolayer accumulates a negative charge. At the second step, the graphene-SiC system is considered as a substrate that adsorbs molecules with a high electron affinity. The charge of these molecules as a function of their surface concentration is calculated. It is shown that, in the case of a monolayer coating, the negative surface charge density of molecules in the molecule-graphene monolayer-SiC substrate system is considerably higher than the surface charge density transferring from the SiC substrate to the graphene layer. This suggests that it is possible to neutralize the excess charge in the graphene layer via adsorption of proper particles on the layer.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf Na8c141ddb0ce4ec8a8dcccff0ef19c88
20 Nc4e3441e10e942babcc9f216d0df0aba
21 sg:journal.1136692
22 schema:name On charge transfer in the adsorbed molecules-graphene monolayer-SiC substrate system
23 schema:pagination 618-622
24 schema:productId Nd53d136cbb42480383853d5a3724924c
25 Nd56099b7d416422b976f7bef505d3395
26 Ne6fd3d59bbc54e83850c2a06a895e893
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014662327
28 https://doi.org/10.1134/s1063782611050083
29 schema:sdDatePublished 2019-04-10T20:45
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N36dc1d84da0e4c7aac929ad46f4629d0
32 schema:url http://link.springer.com/10.1134%2FS1063782611050083
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N36dc1d84da0e4c7aac929ad46f4629d0 schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 Na8c141ddb0ce4ec8a8dcccff0ef19c88 schema:volumeNumber 45
39 rdf:type schema:PublicationVolume
40 Nbed7a2db3743454295a990d86a26f895 rdf:first sg:person.015633711655.34
41 rdf:rest rdf:nil
42 Nc4e3441e10e942babcc9f216d0df0aba schema:issueNumber 5
43 rdf:type schema:PublicationIssue
44 Nd53d136cbb42480383853d5a3724924c schema:name readcube_id
45 schema:value 45da9ec80c78c49c2d9335594c00a9db8bdb5eeb729bb70d89a611bba39ecd69
46 rdf:type schema:PropertyValue
47 Nd56099b7d416422b976f7bef505d3395 schema:name doi
48 schema:value 10.1134/s1063782611050083
49 rdf:type schema:PropertyValue
50 Ne6fd3d59bbc54e83850c2a06a895e893 schema:name dimensions_id
51 schema:value pub.1014662327
52 rdf:type schema:PropertyValue
53 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
54 schema:name Chemical Sciences
55 rdf:type schema:DefinedTerm
56 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
57 schema:name Physical Chemistry (incl. Structural)
58 rdf:type schema:DefinedTerm
59 sg:journal.1136692 schema:issn 1063-7826
60 1090-6479
61 schema:name Semiconductors
62 rdf:type schema:Periodical
63 sg:person.015633711655.34 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
64 schema:familyName Davydov
65 schema:givenName S. Yu.
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015633711655.34
67 rdf:type schema:Person
68 https://doi.org/10.1088/0022-3719/7/15/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058967160
69 rdf:type schema:CreativeWork
70 https://doi.org/10.1088/0953-8984/21/40/402001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005489631
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1103/physrev.124.41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060424736
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1103/physrev.178.1123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060440614
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1103/physrev.71.622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060453259
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1103/physrevb.81.235401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011421859
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1103/physrevlett.103.246804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020363168
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1103/physrevlett.99.076802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029063422
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1103/revmodphys.81.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050408744
85 rdf:type schema:CreativeWork
86 https://www.grid.ac/institutes/grid.423485.c schema:alternateName Ioffe Institute
87 schema:name Ioffe Physical Technical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
88 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...