Quasi-equilibrium hopping drift and field-stimulated diffusion in ultrathin layers of organic materials View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-02

AUTHORS

N. A. Korolev, V. R. Nikitenko, D. V. Ivanov

ABSTRACT

Hopping transport (drift and diffusion) of charge carriers is studied by numerical Monte Carlo simulation at the quasi-equilibrium initial energy distribution of charge carriers in ultrathin disordered organic semiconductor and insulator films (thinner than 100 molecular layers). The effect of variations in the film thickness, the degree of energy disorder, and the applied field strength on the drift mobility and diffusion coefficient is analyzed. It is found that, as the film thickness is increased, the mobility substantially decreases and follows the power law. The diffusion coefficient significantly differs from that obtained previously in the limit of large thicknesses. This result must be taken into consideration in the analysis of experimental data. More... »

PAGES

230-235

References to SciGraph publications

Journal

TITLE

Semiconductors

ISSUE

2

VOLUME

45

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782611020114

DOI

http://dx.doi.org/10.1134/s1063782611020114

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031092461


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "National Research Nuclear University \u201cMEPhL\u201d, 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korolev", 
        "givenName": "N. A.", 
        "id": "sg:person.012262350327.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012262350327.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "National Research Nuclear University \u201cMEPhL\u201d, 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikitenko", 
        "givenName": "V. R.", 
        "id": "sg:person.014743171171.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014743171171.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "National Research Nuclear University \u201cMEPhL\u201d, 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ivanov", 
        "givenName": "D. V.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/pssb.2221070102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005878278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.200600825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010111848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssb.2221750102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022212168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssa.200404335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046065716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/16393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049286795", 
          "https://doi.org/10.1038/16393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/16393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049286795", 
          "https://doi.org/10.1038/16393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/19/13/136210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051720990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2811926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057873319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.4472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.4472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818483"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-02", 
    "datePublishedReg": "2011-02-01", 
    "description": "Hopping transport (drift and diffusion) of charge carriers is studied by numerical Monte Carlo simulation at the quasi-equilibrium initial energy distribution of charge carriers in ultrathin disordered organic semiconductor and insulator films (thinner than 100 molecular layers). The effect of variations in the film thickness, the degree of energy disorder, and the applied field strength on the drift mobility and diffusion coefficient is analyzed. It is found that, as the film thickness is increased, the mobility substantially decreases and follows the power law. The diffusion coefficient significantly differs from that obtained previously in the limit of large thicknesses. This result must be taken into consideration in the analysis of experimental data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063782611020114", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "name": "Quasi-equilibrium hopping drift and field-stimulated diffusion in ultrathin layers of organic materials", 
    "pagination": "230-235", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "941f280a074e135660206590b3869e78616d835268a9d18322f514ed4ef0a021"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782611020114"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031092461"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782611020114", 
      "https://app.dimensions.ai/details/publication/pub.1031092461"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000506.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS1063782611020114"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782611020114'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782611020114'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782611020114'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782611020114'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782611020114 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ne5db820aeb3743d4a5f070fa80ab7ed4
4 schema:citation sg:pub.10.1038/16393
5 https://doi.org/10.1002/adfm.200600825
6 https://doi.org/10.1002/pssa.200404335
7 https://doi.org/10.1002/pssb.2221070102
8 https://doi.org/10.1002/pssb.2221750102
9 https://doi.org/10.1063/1.2811926
10 https://doi.org/10.1088/0953-8984/19/13/136210
11 https://doi.org/10.1103/physrevlett.81.4472
12 schema:datePublished 2011-02
13 schema:datePublishedReg 2011-02-01
14 schema:description Hopping transport (drift and diffusion) of charge carriers is studied by numerical Monte Carlo simulation at the quasi-equilibrium initial energy distribution of charge carriers in ultrathin disordered organic semiconductor and insulator films (thinner than 100 molecular layers). The effect of variations in the film thickness, the degree of energy disorder, and the applied field strength on the drift mobility and diffusion coefficient is analyzed. It is found that, as the film thickness is increased, the mobility substantially decreases and follows the power law. The diffusion coefficient significantly differs from that obtained previously in the limit of large thicknesses. This result must be taken into consideration in the analysis of experimental data.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N0a563ea27df446c48c746efc891a62ca
19 N4b1a9a041f51465288e31dc796587537
20 sg:journal.1136692
21 schema:name Quasi-equilibrium hopping drift and field-stimulated diffusion in ultrathin layers of organic materials
22 schema:pagination 230-235
23 schema:productId N352b286208b9498787649b4b32461362
24 N4f20f424d5794557867e082bf609557b
25 N77acd69ef51b4d5386eda25b4a97e3c8
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031092461
27 https://doi.org/10.1134/s1063782611020114
28 schema:sdDatePublished 2019-04-10T14:59
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Naa2df41f2daf4ddd86af8e91eb6b5f78
31 schema:url http://link.springer.com/10.1134%2FS1063782611020114
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N020c00afb59b41cb895d7c3a5e3cd0ef rdf:first Nab30dfeed7c94de0ad3e46efe54d9a1b
36 rdf:rest rdf:nil
37 N0a563ea27df446c48c746efc891a62ca schema:volumeNumber 45
38 rdf:type schema:PublicationVolume
39 N352b286208b9498787649b4b32461362 schema:name readcube_id
40 schema:value 941f280a074e135660206590b3869e78616d835268a9d18322f514ed4ef0a021
41 rdf:type schema:PropertyValue
42 N45e6757e889e402b94b757af429e8b61 rdf:first sg:person.014743171171.24
43 rdf:rest N020c00afb59b41cb895d7c3a5e3cd0ef
44 N4b1a9a041f51465288e31dc796587537 schema:issueNumber 2
45 rdf:type schema:PublicationIssue
46 N4f20f424d5794557867e082bf609557b schema:name doi
47 schema:value 10.1134/s1063782611020114
48 rdf:type schema:PropertyValue
49 N77acd69ef51b4d5386eda25b4a97e3c8 schema:name dimensions_id
50 schema:value pub.1031092461
51 rdf:type schema:PropertyValue
52 Naa2df41f2daf4ddd86af8e91eb6b5f78 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 Nab30dfeed7c94de0ad3e46efe54d9a1b schema:affiliation https://www.grid.ac/institutes/grid.183446.c
55 schema:familyName Ivanov
56 schema:givenName D. V.
57 rdf:type schema:Person
58 Ne5db820aeb3743d4a5f070fa80ab7ed4 rdf:first sg:person.012262350327.54
59 rdf:rest N45e6757e889e402b94b757af429e8b61
60 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
61 schema:name Engineering
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
64 schema:name Materials Engineering
65 rdf:type schema:DefinedTerm
66 sg:journal.1136692 schema:issn 1063-7826
67 1090-6479
68 schema:name Semiconductors
69 rdf:type schema:Periodical
70 sg:person.012262350327.54 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
71 schema:familyName Korolev
72 schema:givenName N. A.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012262350327.54
74 rdf:type schema:Person
75 sg:person.014743171171.24 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
76 schema:familyName Nikitenko
77 schema:givenName V. R.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014743171171.24
79 rdf:type schema:Person
80 sg:pub.10.1038/16393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049286795
81 https://doi.org/10.1038/16393
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1002/adfm.200600825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010111848
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1002/pssa.200404335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046065716
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1002/pssb.2221070102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005878278
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1002/pssb.2221750102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022212168
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1063/1.2811926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057873319
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1088/0953-8984/19/13/136210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051720990
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1103/physrevlett.81.4472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060818483
96 rdf:type schema:CreativeWork
97 https://www.grid.ac/institutes/grid.183446.c schema:alternateName Moscow Engineering Physics Institute
98 schema:name National Research Nuclear University “MEPhL”, 115409, Moscow, Russia
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...