Ontology type: schema:ScholarlyArticle
2009-08-13
AUTHORSA. M. Mizerov, V. N. Jmerik, V. K. Kaibyshev, T. A. Komissarova, S. A. Masalov, S. V. Ivanov
ABSTRACTThe results of comparative studies of the growth kinetics of the GaN layers of different polarity during ammonia molecular beam epitaxy and plasma-assisted molecular beam epitaxy (PA MBE) of nitrogen with the use of sapphire substrates and GaN(000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar 1 $$\end{document})/c-Al2O3 templates grown by gas-phase epitaxy from metalorganic compounds are presented. The possibility is shown of obtaining the GaN layers with an atomically smooth surface during molecular beam epitaxy with plasma activation of nitrogen. For this purpose, it is suggested to carry out the growth in conditions enriched with metal near the mode of formation of the Ga drops at a temperature close to the decomposition temperature of GaN (TS ≈ 760°C). The conclusion is made that an increase in the growth temperature positively affects the structural, optical, and electrical properties of the GaN (000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar 1 $$\end{document}) layers. A high quality of the GaN (0001) films grown by the PA MBE method at a low temperature of ∼700°C on the GaN/c-Al2O3 templates is shown. More... »
PAGES1058-1063
http://scigraph.springernature.com/pub.10.1134/s1063782609080181
DOIhttp://dx.doi.org/10.1134/s1063782609080181
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1026234409
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Other Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Mizerov",
"givenName": "A. M.",
"id": "sg:person.011570622443.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011570622443.35"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Jmerik",
"givenName": "V. N.",
"id": "sg:person.010773242043.36",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010773242043.36"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Kaibyshev",
"givenName": "V. K.",
"id": "sg:person.013446152625.16",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013446152625.16"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Komissarova",
"givenName": "T. A.",
"id": "sg:person.014336551721.47",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014336551721.47"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Masalov",
"givenName": "S. A.",
"id": "sg:person.010544066315.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010544066315.11"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Ivanov",
"givenName": "S. V.",
"id": "sg:person.01064304443.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064304443.31"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1557/s1092578300001848",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010098939",
"https://doi.org/10.1557/s1092578300001848"
],
"type": "CreativeWork"
}
],
"datePublished": "2009-08-13",
"datePublishedReg": "2009-08-13",
"description": "The results of comparative studies of the growth kinetics of the GaN layers of different polarity during ammonia molecular beam epitaxy and plasma-assisted molecular beam epitaxy (PA MBE) of nitrogen with the use of sapphire substrates and GaN(000\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\n\\bar 1\n$$\\end{document})/c-Al2O3 templates grown by gas-phase epitaxy from metalorganic compounds are presented. The possibility is shown of obtaining the GaN layers with an atomically smooth surface during molecular beam epitaxy with plasma activation of nitrogen. For this purpose, it is suggested to carry out the growth in conditions enriched with metal near the mode of formation of the Ga drops at a temperature close to the decomposition temperature of GaN (TS \u2248 760\u00b0C). The conclusion is made that an increase in the growth temperature positively affects the structural, optical, and electrical properties of the GaN (000\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\n\\bar 1\n$$\\end{document}) layers. A high quality of the GaN (0001) films grown by the PA MBE method at a low temperature of \u223c700\u00b0C on the GaN/c-Al2O3 templates is shown.",
"genre": "article",
"id": "sg:pub.10.1134/s1063782609080181",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136692",
"issn": [
"1063-7826",
"1090-6479"
],
"name": "Semiconductors",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "8",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "43"
}
],
"keywords": [
"molecular beam epitaxy",
"GaN layers",
"beam epitaxy",
"ammonia molecular beam epitaxy",
"plasma-assisted molecular beam epitaxy",
"Al2O3 templates",
"GaN/c",
"gas-phase epitaxy",
"electrical properties",
"GaN films",
"plasma activation",
"sapphire substrates",
"MBE method",
"smooth surface",
"metalorganic compounds",
"epitaxy",
"decomposition temperature",
"layer",
"GaN",
"growth temperature",
"activation of nitrogen",
"temperature",
"growth kinetics",
"low temperature",
"high quality",
"films",
"gas",
"different methods",
"surface",
"nitrogen",
"metals",
"different polarity",
"substrate",
"method",
"template",
"properties",
"mode",
"comparative study",
"kinetics",
"conditions",
"use",
"results",
"formation",
"polarity",
"mode of formation",
"increase",
"quality",
"possibility",
"features",
"purpose",
"growth",
"study",
"compounds",
"conclusion",
"activation"
],
"name": "Features of molecular beam epitaxy of the GaN (0001) and GaN (000) layers with the use of different methods of activation of nitrogen",
"pagination": "1058-1063",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1026234409"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s1063782609080181"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s1063782609080181",
"https://app.dimensions.ai/details/publication/pub.1026234409"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:25",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_475.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s1063782609080181"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782609080181'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782609080181'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782609080181'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782609080181'
This table displays all metadata directly associated to this object as RDF triples.
152 TRIPLES
22 PREDICATES
81 URIs
72 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s1063782609080181 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0299 |
3 | ″ | schema:author | Nf64cb257e89849658619468f4effc023 |
4 | ″ | schema:citation | sg:pub.10.1557/s1092578300001848 |
5 | ″ | schema:datePublished | 2009-08-13 |
6 | ″ | schema:datePublishedReg | 2009-08-13 |
7 | ″ | schema:description | The results of comparative studies of the growth kinetics of the GaN layers of different polarity during ammonia molecular beam epitaxy and plasma-assisted molecular beam epitaxy (PA MBE) of nitrogen with the use of sapphire substrates and GaN(000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar 1 $$\end{document})/c-Al2O3 templates grown by gas-phase epitaxy from metalorganic compounds are presented. The possibility is shown of obtaining the GaN layers with an atomically smooth surface during molecular beam epitaxy with plasma activation of nitrogen. For this purpose, it is suggested to carry out the growth in conditions enriched with metal near the mode of formation of the Ga drops at a temperature close to the decomposition temperature of GaN (TS ≈ 760°C). The conclusion is made that an increase in the growth temperature positively affects the structural, optical, and electrical properties of the GaN (000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar 1 $$\end{document}) layers. A high quality of the GaN (0001) films grown by the PA MBE method at a low temperature of ∼700°C on the GaN/c-Al2O3 templates is shown. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N51ecd7732f454219b620c737c85ca8ac |
12 | ″ | ″ | N767fee6a57474e8e9180114d172067de |
13 | ″ | ″ | sg:journal.1136692 |
14 | ″ | schema:keywords | Al2O3 templates |
15 | ″ | ″ | GaN |
16 | ″ | ″ | GaN films |
17 | ″ | ″ | GaN layers |
18 | ″ | ″ | GaN/c |
19 | ″ | ″ | MBE method |
20 | ″ | ″ | activation |
21 | ″ | ″ | activation of nitrogen |
22 | ″ | ″ | ammonia molecular beam epitaxy |
23 | ″ | ″ | beam epitaxy |
24 | ″ | ″ | comparative study |
25 | ″ | ″ | compounds |
26 | ″ | ″ | conclusion |
27 | ″ | ″ | conditions |
28 | ″ | ″ | decomposition temperature |
29 | ″ | ″ | different methods |
30 | ″ | ″ | different polarity |
31 | ″ | ″ | electrical properties |
32 | ″ | ″ | epitaxy |
33 | ″ | ″ | features |
34 | ″ | ″ | films |
35 | ″ | ″ | formation |
36 | ″ | ″ | gas |
37 | ″ | ″ | gas-phase epitaxy |
38 | ″ | ″ | growth |
39 | ″ | ″ | growth kinetics |
40 | ″ | ″ | growth temperature |
41 | ″ | ″ | high quality |
42 | ″ | ″ | increase |
43 | ″ | ″ | kinetics |
44 | ″ | ″ | layer |
45 | ″ | ″ | low temperature |
46 | ″ | ″ | metalorganic compounds |
47 | ″ | ″ | metals |
48 | ″ | ″ | method |
49 | ″ | ″ | mode |
50 | ″ | ″ | mode of formation |
51 | ″ | ″ | molecular beam epitaxy |
52 | ″ | ″ | nitrogen |
53 | ″ | ″ | plasma activation |
54 | ″ | ″ | plasma-assisted molecular beam epitaxy |
55 | ″ | ″ | polarity |
56 | ″ | ″ | possibility |
57 | ″ | ″ | properties |
58 | ″ | ″ | purpose |
59 | ″ | ″ | quality |
60 | ″ | ″ | results |
61 | ″ | ″ | sapphire substrates |
62 | ″ | ″ | smooth surface |
63 | ″ | ″ | study |
64 | ″ | ″ | substrate |
65 | ″ | ″ | surface |
66 | ″ | ″ | temperature |
67 | ″ | ″ | template |
68 | ″ | ″ | use |
69 | ″ | schema:name | Features of molecular beam epitaxy of the GaN (0001) and GaN (000) layers with the use of different methods of activation of nitrogen |
70 | ″ | schema:pagination | 1058-1063 |
71 | ″ | schema:productId | N4a921a0b459649bbb316117e09270f83 |
72 | ″ | ″ | Na1061ad75c204f758ead181bb028f2a4 |
73 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1026234409 |
74 | ″ | ″ | https://doi.org/10.1134/s1063782609080181 |
75 | ″ | schema:sdDatePublished | 2022-05-20T07:25 |
76 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
77 | ″ | schema:sdPublisher | Nc9973af47d774bdc8a12d102f49d94f5 |
78 | ″ | schema:url | https://doi.org/10.1134/s1063782609080181 |
79 | ″ | sgo:license | sg:explorer/license/ |
80 | ″ | sgo:sdDataset | articles |
81 | ″ | rdf:type | schema:ScholarlyArticle |
82 | N351a1683d3804638a2cd61810124184c | rdf:first | sg:person.013446152625.16 |
83 | ″ | rdf:rest | N4af3eebb992d46329508c5106188d31d |
84 | N3876e3e198504eb1aae87189b94a5906 | rdf:first | sg:person.010773242043.36 |
85 | ″ | rdf:rest | N351a1683d3804638a2cd61810124184c |
86 | N4a921a0b459649bbb316117e09270f83 | schema:name | doi |
87 | ″ | schema:value | 10.1134/s1063782609080181 |
88 | ″ | rdf:type | schema:PropertyValue |
89 | N4af3eebb992d46329508c5106188d31d | rdf:first | sg:person.014336551721.47 |
90 | ″ | rdf:rest | Naed822db8c4146099afcc92877c3d2a3 |
91 | N51ecd7732f454219b620c737c85ca8ac | schema:volumeNumber | 43 |
92 | ″ | rdf:type | schema:PublicationVolume |
93 | N767fee6a57474e8e9180114d172067de | schema:issueNumber | 8 |
94 | ″ | rdf:type | schema:PublicationIssue |
95 | Na1061ad75c204f758ead181bb028f2a4 | schema:name | dimensions_id |
96 | ″ | schema:value | pub.1026234409 |
97 | ″ | rdf:type | schema:PropertyValue |
98 | Naed822db8c4146099afcc92877c3d2a3 | rdf:first | sg:person.010544066315.11 |
99 | ″ | rdf:rest | Nc51dc6056e8440f5a0c4d8f24e48dc73 |
100 | Nc51dc6056e8440f5a0c4d8f24e48dc73 | rdf:first | sg:person.01064304443.31 |
101 | ″ | rdf:rest | rdf:nil |
102 | Nc9973af47d774bdc8a12d102f49d94f5 | schema:name | Springer Nature - SN SciGraph project |
103 | ″ | rdf:type | schema:Organization |
104 | Nf64cb257e89849658619468f4effc023 | rdf:first | sg:person.011570622443.35 |
105 | ″ | rdf:rest | N3876e3e198504eb1aae87189b94a5906 |
106 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
107 | ″ | schema:name | Physical Sciences |
108 | ″ | rdf:type | schema:DefinedTerm |
109 | anzsrc-for:0299 | schema:inDefinedTermSet | anzsrc-for: |
110 | ″ | schema:name | Other Physical Sciences |
111 | ″ | rdf:type | schema:DefinedTerm |
112 | sg:journal.1136692 | schema:issn | 1063-7826 |
113 | ″ | ″ | 1090-6479 |
114 | ″ | schema:name | Semiconductors |
115 | ″ | schema:publisher | Pleiades Publishing |
116 | ″ | rdf:type | schema:Periodical |
117 | sg:person.010544066315.11 | schema:affiliation | grid-institutes:grid.423485.c |
118 | ″ | schema:familyName | Masalov |
119 | ″ | schema:givenName | S. A. |
120 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010544066315.11 |
121 | ″ | rdf:type | schema:Person |
122 | sg:person.01064304443.31 | schema:affiliation | grid-institutes:grid.423485.c |
123 | ″ | schema:familyName | Ivanov |
124 | ″ | schema:givenName | S. V. |
125 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064304443.31 |
126 | ″ | rdf:type | schema:Person |
127 | sg:person.010773242043.36 | schema:affiliation | grid-institutes:grid.423485.c |
128 | ″ | schema:familyName | Jmerik |
129 | ″ | schema:givenName | V. N. |
130 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010773242043.36 |
131 | ″ | rdf:type | schema:Person |
132 | sg:person.011570622443.35 | schema:affiliation | grid-institutes:grid.423485.c |
133 | ″ | schema:familyName | Mizerov |
134 | ″ | schema:givenName | A. M. |
135 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011570622443.35 |
136 | ″ | rdf:type | schema:Person |
137 | sg:person.013446152625.16 | schema:affiliation | grid-institutes:grid.423485.c |
138 | ″ | schema:familyName | Kaibyshev |
139 | ″ | schema:givenName | V. K. |
140 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013446152625.16 |
141 | ″ | rdf:type | schema:Person |
142 | sg:person.014336551721.47 | schema:affiliation | grid-institutes:grid.423485.c |
143 | ″ | schema:familyName | Komissarova |
144 | ″ | schema:givenName | T. A. |
145 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014336551721.47 |
146 | ″ | rdf:type | schema:Person |
147 | sg:pub.10.1557/s1092578300001848 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1010098939 |
148 | ″ | ″ | https://doi.org/10.1557/s1092578300001848 |
149 | ″ | rdf:type | schema:CreativeWork |
150 | grid-institutes:grid.423485.c | schema:alternateName | Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia |
151 | ″ | schema:name | Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia |
152 | ″ | rdf:type | schema:Organization |