Ontology type: schema:ScholarlyArticle
2009-07-11
AUTHORSO. V. Aleksandrov, V. V. Kozlovski
ABSTRACTFor the first time, the quantitative model of interaction between silicide-forming metal Ni and single-crystalline SiC is developed on the basis of the mutual diffusion of components and the volume silicide-formation reaction. The model makes it possible to describe satisfactorily the basic properties of the redistribution of components during the thermal annealing and during the proton irradiation of the Ni-SiC system at elevated temperatures, specifically: the presence of an extended reaction zone, an excess of the carbon concentration over the silicon concentration at the interface with the SiC substrate, and the carbon accumulation near the surface. It is shown that the stimulation of the interaction between metal Ni and SiC by the proton irradiation at an elevated temperature occurs due to an increase in the metal diffusivity and in the constants of rates of reactions of solid-phase silicide-formation. An acceleration of metal diffusion is associated with the generation of elementary radiation defects (interstitial atoms and vacancies), while an increase in the constants of rates of solid-phase reactions is attributed to a generation of vacancies, which contribute free volume. More... »
PAGES885-891
http://scigraph.springernature.com/pub.10.1134/s1063782609070100
DOIhttp://dx.doi.org/10.1134/s1063782609070100
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1014145010
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Condensed Matter Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Quantum Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "St. Petersburg State Electrotechnical University \u201cL\u00c9TI,\u201d, 197376, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.15447.33",
"name": [
"St. Petersburg State Electrotechnical University \u201cL\u00c9TI,\u201d, 197376, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Aleksandrov",
"givenName": "O. V.",
"id": "sg:person.013325156241.07",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013325156241.07"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "St. Petersburg State Polytechnical University, 195251, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.32495.39",
"name": [
"St. Petersburg State Polytechnical University, 195251, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Kozlovski",
"givenName": "V. V.",
"id": "sg:person.011730241573.99",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011730241573.99"
],
"type": "Person"
}
],
"datePublished": "2009-07-11",
"datePublishedReg": "2009-07-11",
"description": "For the first time, the quantitative model of interaction between silicide-forming metal Ni and single-crystalline SiC is developed on the basis of the mutual diffusion of components and the volume silicide-formation reaction. The model makes it possible to describe satisfactorily the basic properties of the redistribution of components during the thermal annealing and during the proton irradiation of the Ni-SiC system at elevated temperatures, specifically: the presence of an extended reaction zone, an excess of the carbon concentration over the silicon concentration at the interface with the SiC substrate, and the carbon accumulation near the surface. It is shown that the stimulation of the interaction between metal Ni and SiC by the proton irradiation at an elevated temperature occurs due to an increase in the metal diffusivity and in the constants of rates of reactions of solid-phase silicide-formation. An acceleration of metal diffusion is associated with the generation of elementary radiation defects (interstitial atoms and vacancies), while an increase in the constants of rates of solid-phase reactions is attributed to a generation of vacancies, which contribute free volume.",
"genre": "article",
"id": "sg:pub.10.1134/s1063782609070100",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136692",
"issn": [
"1063-7826",
"1090-6479"
],
"name": "Semiconductors",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "7",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "43"
}
],
"keywords": [
"silicide formation reactions",
"elevated temperatures",
"single-crystalline SiC",
"metal Ni",
"extended reaction zone",
"solid-phase reaction",
"silicon carbide",
"thermal annealing",
"simulation of interaction",
"generation of vacancies",
"ohmic contacts",
"SiC substrate",
"reaction zone",
"proton irradiation",
"metal diffusion",
"mutual diffusion",
"silicon concentration",
"SiC",
"free volume",
"metal diffusivity",
"radiation defects",
"redistribution of components",
"carbon concentration",
"temperature",
"Ni",
"carbide",
"diffusion",
"annealing",
"diffusivity",
"simulations",
"nickel",
"interface",
"generation",
"surface",
"irradiation",
"substrate",
"basic properties",
"acceleration",
"vacancies",
"properties",
"first time",
"model",
"quantitative model",
"components",
"zone",
"contact",
"constants",
"increase",
"concentration",
"system",
"rate",
"reaction",
"defects",
"interaction",
"redistribution",
"volume",
"formation",
"time",
"excess",
"basis",
"presence",
"carbon accumulation",
"accumulation",
"stimulation"
],
"name": "Simulation of interaction between nickel and silicon carbide during the formation of ohmic contacts",
"pagination": "885-891",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1014145010"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s1063782609070100"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s1063782609070100",
"https://app.dimensions.ai/details/publication/pub.1014145010"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:25",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_486.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s1063782609070100"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782609070100'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782609070100'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782609070100'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782609070100'
This table displays all metadata directly associated to this object as RDF triples.
136 TRIPLES
21 PREDICATES
90 URIs
81 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s1063782609070100 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0204 |
3 | ″ | ″ | anzsrc-for:0206 |
4 | ″ | schema:author | Nbd0960d3442c4608a57b7a3ede0f411d |
5 | ″ | schema:datePublished | 2009-07-11 |
6 | ″ | schema:datePublishedReg | 2009-07-11 |
7 | ″ | schema:description | For the first time, the quantitative model of interaction between silicide-forming metal Ni and single-crystalline SiC is developed on the basis of the mutual diffusion of components and the volume silicide-formation reaction. The model makes it possible to describe satisfactorily the basic properties of the redistribution of components during the thermal annealing and during the proton irradiation of the Ni-SiC system at elevated temperatures, specifically: the presence of an extended reaction zone, an excess of the carbon concentration over the silicon concentration at the interface with the SiC substrate, and the carbon accumulation near the surface. It is shown that the stimulation of the interaction between metal Ni and SiC by the proton irradiation at an elevated temperature occurs due to an increase in the metal diffusivity and in the constants of rates of reactions of solid-phase silicide-formation. An acceleration of metal diffusion is associated with the generation of elementary radiation defects (interstitial atoms and vacancies), while an increase in the constants of rates of solid-phase reactions is attributed to a generation of vacancies, which contribute free volume. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N5a81734e717142fcb9485a55e1ab3018 |
12 | ″ | ″ | Nb1e9b65ab1314212a0a3e365dd9fb1a8 |
13 | ″ | ″ | sg:journal.1136692 |
14 | ″ | schema:keywords | Ni |
15 | ″ | ″ | SiC |
16 | ″ | ″ | SiC substrate |
17 | ″ | ″ | acceleration |
18 | ″ | ″ | accumulation |
19 | ″ | ″ | annealing |
20 | ″ | ″ | basic properties |
21 | ″ | ″ | basis |
22 | ″ | ″ | carbide |
23 | ″ | ″ | carbon accumulation |
24 | ″ | ″ | carbon concentration |
25 | ″ | ″ | components |
26 | ″ | ″ | concentration |
27 | ″ | ″ | constants |
28 | ″ | ″ | contact |
29 | ″ | ″ | defects |
30 | ″ | ″ | diffusion |
31 | ″ | ″ | diffusivity |
32 | ″ | ″ | elevated temperatures |
33 | ″ | ″ | excess |
34 | ″ | ″ | extended reaction zone |
35 | ″ | ″ | first time |
36 | ″ | ″ | formation |
37 | ″ | ″ | free volume |
38 | ″ | ″ | generation |
39 | ″ | ″ | generation of vacancies |
40 | ″ | ″ | increase |
41 | ″ | ″ | interaction |
42 | ″ | ″ | interface |
43 | ″ | ″ | irradiation |
44 | ″ | ″ | metal Ni |
45 | ″ | ″ | metal diffusion |
46 | ″ | ″ | metal diffusivity |
47 | ″ | ″ | model |
48 | ″ | ″ | mutual diffusion |
49 | ″ | ″ | nickel |
50 | ″ | ″ | ohmic contacts |
51 | ″ | ″ | presence |
52 | ″ | ″ | properties |
53 | ″ | ″ | proton irradiation |
54 | ″ | ″ | quantitative model |
55 | ″ | ″ | radiation defects |
56 | ″ | ″ | rate |
57 | ″ | ″ | reaction |
58 | ″ | ″ | reaction zone |
59 | ″ | ″ | redistribution |
60 | ″ | ″ | redistribution of components |
61 | ″ | ″ | silicide formation reactions |
62 | ″ | ″ | silicon carbide |
63 | ″ | ″ | silicon concentration |
64 | ″ | ″ | simulation of interaction |
65 | ″ | ″ | simulations |
66 | ″ | ″ | single-crystalline SiC |
67 | ″ | ″ | solid-phase reaction |
68 | ″ | ″ | stimulation |
69 | ″ | ″ | substrate |
70 | ″ | ″ | surface |
71 | ″ | ″ | system |
72 | ″ | ″ | temperature |
73 | ″ | ″ | thermal annealing |
74 | ″ | ″ | time |
75 | ″ | ″ | vacancies |
76 | ″ | ″ | volume |
77 | ″ | ″ | zone |
78 | ″ | schema:name | Simulation of interaction between nickel and silicon carbide during the formation of ohmic contacts |
79 | ″ | schema:pagination | 885-891 |
80 | ″ | schema:productId | N0f69f0eee2c1470ab21de8702d5964f4 |
81 | ″ | ″ | Nf5bec3e88c284b24ab8dc87fb14d96d6 |
82 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1014145010 |
83 | ″ | ″ | https://doi.org/10.1134/s1063782609070100 |
84 | ″ | schema:sdDatePublished | 2022-05-20T07:25 |
85 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
86 | ″ | schema:sdPublisher | N80497b410be142029885dcd08da224d3 |
87 | ″ | schema:url | https://doi.org/10.1134/s1063782609070100 |
88 | ″ | sgo:license | sg:explorer/license/ |
89 | ″ | sgo:sdDataset | articles |
90 | ″ | rdf:type | schema:ScholarlyArticle |
91 | N0f69f0eee2c1470ab21de8702d5964f4 | schema:name | doi |
92 | ″ | schema:value | 10.1134/s1063782609070100 |
93 | ″ | rdf:type | schema:PropertyValue |
94 | N5a81734e717142fcb9485a55e1ab3018 | schema:volumeNumber | 43 |
95 | ″ | rdf:type | schema:PublicationVolume |
96 | N80497b410be142029885dcd08da224d3 | schema:name | Springer Nature - SN SciGraph project |
97 | ″ | rdf:type | schema:Organization |
98 | N9fa4c92c123b4be585ed4cd1a60f54a2 | rdf:first | sg:person.011730241573.99 |
99 | ″ | rdf:rest | rdf:nil |
100 | Nb1e9b65ab1314212a0a3e365dd9fb1a8 | schema:issueNumber | 7 |
101 | ″ | rdf:type | schema:PublicationIssue |
102 | Nbd0960d3442c4608a57b7a3ede0f411d | rdf:first | sg:person.013325156241.07 |
103 | ″ | rdf:rest | N9fa4c92c123b4be585ed4cd1a60f54a2 |
104 | Nf5bec3e88c284b24ab8dc87fb14d96d6 | schema:name | dimensions_id |
105 | ″ | schema:value | pub.1014145010 |
106 | ″ | rdf:type | schema:PropertyValue |
107 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
108 | ″ | schema:name | Physical Sciences |
109 | ″ | rdf:type | schema:DefinedTerm |
110 | anzsrc-for:0204 | schema:inDefinedTermSet | anzsrc-for: |
111 | ″ | schema:name | Condensed Matter Physics |
112 | ″ | rdf:type | schema:DefinedTerm |
113 | anzsrc-for:0206 | schema:inDefinedTermSet | anzsrc-for: |
114 | ″ | schema:name | Quantum Physics |
115 | ″ | rdf:type | schema:DefinedTerm |
116 | sg:journal.1136692 | schema:issn | 1063-7826 |
117 | ″ | ″ | 1090-6479 |
118 | ″ | schema:name | Semiconductors |
119 | ″ | schema:publisher | Pleiades Publishing |
120 | ″ | rdf:type | schema:Periodical |
121 | sg:person.011730241573.99 | schema:affiliation | grid-institutes:grid.32495.39 |
122 | ″ | schema:familyName | Kozlovski |
123 | ″ | schema:givenName | V. V. |
124 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011730241573.99 |
125 | ″ | rdf:type | schema:Person |
126 | sg:person.013325156241.07 | schema:affiliation | grid-institutes:grid.15447.33 |
127 | ″ | schema:familyName | Aleksandrov |
128 | ″ | schema:givenName | O. V. |
129 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013325156241.07 |
130 | ″ | rdf:type | schema:Person |
131 | grid-institutes:grid.15447.33 | schema:alternateName | St. Petersburg State Electrotechnical University “LÉTI,”, 197376, St. Petersburg, Russia |
132 | ″ | schema:name | St. Petersburg State Electrotechnical University “LÉTI,”, 197376, St. Petersburg, Russia |
133 | ″ | rdf:type | schema:Organization |
134 | grid-institutes:grid.32495.39 | schema:alternateName | St. Petersburg State Polytechnical University, 195251, St. Petersburg, Russia |
135 | ″ | schema:name | St. Petersburg State Polytechnical University, 195251, St. Petersburg, Russia |
136 | ″ | rdf:type | schema:Organization |