Transport in GaAs/AlxGa1−xAs superlattices with narrow minibands: Effects of interminiband tunneling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-02-10

AUTHORS

A. A. Andronov, E. P. Dodin, D. I. Zinchenko, Yu. N. Nozdrin

ABSTRACT

The results of experimental investigations for the I–V characteristics are presented for superlattices based on GaAs/AlxGa1−xAs with thin barriers in the electric-field region with an intense interminiband tunneling. The regular features for the I–V characteristics are found in the voltage range adequate to the static positive differential conductivity in the superlattice. On the basis of calculations for the Wannier-Stark levels, it is established that the observed features are associated with the resonant tunneling between these levels belonging to quantum wells located at a distance from 6–13 superlattice periods from each other. It is noted that the similar resonant delocalization of Wannier-Stark wave functions can lead to the existence of dynamic negative differential conductivity for the laser type of an appreciable value in such superlattices. More... »

PAGES

228-235

References to SciGraph publications

  • 2002-05. Terahertz semiconductor-heterostructure laser in NATURE
  • 1929-07. Über die Quantenmechanik der Elektronen in Kristallgittern in ZEITSCHRIFT FÜR PHYSIK A HADRONS AND NUCLEI
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s1063782609020213

    DOI

    http://dx.doi.org/10.1134/s1063782609020213

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1004162656


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute for Physics of Microstructures, Russian Academy of Sciences, 603950, Nizhni Novgorod, Russia", 
              "id": "http://www.grid.ac/institutes/grid.425081.a", 
              "name": [
                "Institute for Physics of Microstructures, Russian Academy of Sciences, 603950, Nizhni Novgorod, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Andronov", 
            "givenName": "A. A.", 
            "id": "sg:person.013123321516.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013123321516.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Physics of Microstructures, Russian Academy of Sciences, 603950, Nizhni Novgorod, Russia", 
              "id": "http://www.grid.ac/institutes/grid.425081.a", 
              "name": [
                "Institute for Physics of Microstructures, Russian Academy of Sciences, 603950, Nizhni Novgorod, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dodin", 
            "givenName": "E. P.", 
            "id": "sg:person.013462724352.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013462724352.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Physics of Microstructures, Russian Academy of Sciences, 603950, Nizhni Novgorod, Russia", 
              "id": "http://www.grid.ac/institutes/grid.425081.a", 
              "name": [
                "Institute for Physics of Microstructures, Russian Academy of Sciences, 603950, Nizhni Novgorod, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zinchenko", 
            "givenName": "D. I.", 
            "id": "sg:person.016111223516.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016111223516.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Physics of Microstructures, Russian Academy of Sciences, 603950, Nizhni Novgorod, Russia", 
              "id": "http://www.grid.ac/institutes/grid.425081.a", 
              "name": [
                "Institute for Physics of Microstructures, Russian Academy of Sciences, 603950, Nizhni Novgorod, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nozdrin", 
            "givenName": "Yu. N.", 
            "id": "sg:person.015754340241.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015754340241.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01339455", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039883179", 
              "https://doi.org/10.1007/bf01339455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/417156a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027918831", 
              "https://doi.org/10.1038/417156a"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-02-10", 
        "datePublishedReg": "2009-02-10", 
        "description": "The results of experimental investigations for the I\u2013V characteristics are presented for superlattices based on GaAs/AlxGa1\u2212xAs with thin barriers in the electric-field region with an intense interminiband tunneling. The regular features for the I\u2013V characteristics are found in the voltage range adequate to the static positive differential conductivity in the superlattice. On the basis of calculations for the Wannier-Stark levels, it is established that the observed features are associated with the resonant tunneling between these levels belonging to quantum wells located at a distance from 6\u201313 superlattice periods from each other. It is noted that the similar resonant delocalization of Wannier-Stark wave functions can lead to the existence of dynamic negative differential conductivity for the laser type of an appreciable value in such superlattices.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s1063782609020213", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136692", 
            "issn": [
              "1063-7826", 
              "1090-6479"
            ], 
            "name": "Semiconductors", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "43"
          }
        ], 
        "keywords": [
          "interminiband tunneling", 
          "electric field region", 
          "differential conductivity", 
          "positive differential conductivity", 
          "experimental investigation", 
          "voltage range", 
          "negative differential conductivity", 
          "GaAs/", 
          "thin barrier", 
          "Wannier-Stark levels", 
          "conductivity", 
          "such superlattices", 
          "superlattices", 
          "appreciable value", 
          "laser types", 
          "narrow minibands", 
          "resonant tunneling", 
          "wave functions", 
          "basis of calculations", 
          "tunneling", 
          "observed features", 
          "characteristics", 
          "resonant delocalization", 
          "wells", 
          "transport", 
          "minibands", 
          "range", 
          "calculations", 
          "investigation", 
          "delocalization", 
          "regular feature", 
          "features", 
          "results", 
          "distance", 
          "values", 
          "effect", 
          "region", 
          "types", 
          "barriers", 
          "existence", 
          "basis", 
          "function", 
          "levels", 
          "period"
        ], 
        "name": "Transport in GaAs/AlxGa1\u2212xAs superlattices with narrow minibands: Effects of interminiband tunneling", 
        "pagination": "228-235", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1004162656"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s1063782609020213"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s1063782609020213", 
          "https://app.dimensions.ai/details/publication/pub.1004162656"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_493.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s1063782609020213"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782609020213'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782609020213'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782609020213'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782609020213'


     

    This table displays all metadata directly associated to this object as RDF triples.

    130 TRIPLES      21 PREDICATES      70 URIs      60 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s1063782609020213 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author N53abd8b8133b4b1c8a75ded86d7be77a
    4 schema:citation sg:pub.10.1007/bf01339455
    5 sg:pub.10.1038/417156a
    6 schema:datePublished 2009-02-10
    7 schema:datePublishedReg 2009-02-10
    8 schema:description The results of experimental investigations for the I–V characteristics are presented for superlattices based on GaAs/AlxGa1−xAs with thin barriers in the electric-field region with an intense interminiband tunneling. The regular features for the I–V characteristics are found in the voltage range adequate to the static positive differential conductivity in the superlattice. On the basis of calculations for the Wannier-Stark levels, it is established that the observed features are associated with the resonant tunneling between these levels belonging to quantum wells located at a distance from 6–13 superlattice periods from each other. It is noted that the similar resonant delocalization of Wannier-Stark wave functions can lead to the existence of dynamic negative differential conductivity for the laser type of an appreciable value in such superlattices.
    9 schema:genre article
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N0ac8660e782a4738a8778ec8d5ccda1c
    12 Nb362f70e8d4b4941a0b71a7227e01e75
    13 sg:journal.1136692
    14 schema:keywords GaAs/
    15 Wannier-Stark levels
    16 appreciable value
    17 barriers
    18 basis
    19 basis of calculations
    20 calculations
    21 characteristics
    22 conductivity
    23 delocalization
    24 differential conductivity
    25 distance
    26 effect
    27 electric field region
    28 existence
    29 experimental investigation
    30 features
    31 function
    32 interminiband tunneling
    33 investigation
    34 laser types
    35 levels
    36 minibands
    37 narrow minibands
    38 negative differential conductivity
    39 observed features
    40 period
    41 positive differential conductivity
    42 range
    43 region
    44 regular feature
    45 resonant delocalization
    46 resonant tunneling
    47 results
    48 such superlattices
    49 superlattices
    50 thin barrier
    51 transport
    52 tunneling
    53 types
    54 values
    55 voltage range
    56 wave functions
    57 wells
    58 schema:name Transport in GaAs/AlxGa1−xAs superlattices with narrow minibands: Effects of interminiband tunneling
    59 schema:pagination 228-235
    60 schema:productId Nbd3182fc790949fe96ee20761e1f38a8
    61 Nf3a4eedbe5de47a7ada76b64fae0a76c
    62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004162656
    63 https://doi.org/10.1134/s1063782609020213
    64 schema:sdDatePublished 2022-09-02T15:53
    65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    66 schema:sdPublisher N09817d329cd44f0f9d9895d246b8f82d
    67 schema:url https://doi.org/10.1134/s1063782609020213
    68 sgo:license sg:explorer/license/
    69 sgo:sdDataset articles
    70 rdf:type schema:ScholarlyArticle
    71 N09817d329cd44f0f9d9895d246b8f82d schema:name Springer Nature - SN SciGraph project
    72 rdf:type schema:Organization
    73 N0ac8660e782a4738a8778ec8d5ccda1c schema:volumeNumber 43
    74 rdf:type schema:PublicationVolume
    75 N10c48e1a08614add95551f304da33f72 rdf:first sg:person.015754340241.27
    76 rdf:rest rdf:nil
    77 N2afd9aaeccb7446ab1a5c48192a3279b rdf:first sg:person.016111223516.13
    78 rdf:rest N10c48e1a08614add95551f304da33f72
    79 N53abd8b8133b4b1c8a75ded86d7be77a rdf:first sg:person.013123321516.17
    80 rdf:rest Nd2207514abb04298bc71d70da4484f9e
    81 Nb362f70e8d4b4941a0b71a7227e01e75 schema:issueNumber 2
    82 rdf:type schema:PublicationIssue
    83 Nbd3182fc790949fe96ee20761e1f38a8 schema:name doi
    84 schema:value 10.1134/s1063782609020213
    85 rdf:type schema:PropertyValue
    86 Nd2207514abb04298bc71d70da4484f9e rdf:first sg:person.013462724352.52
    87 rdf:rest N2afd9aaeccb7446ab1a5c48192a3279b
    88 Nf3a4eedbe5de47a7ada76b64fae0a76c schema:name dimensions_id
    89 schema:value pub.1004162656
    90 rdf:type schema:PropertyValue
    91 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Physical Sciences
    93 rdf:type schema:DefinedTerm
    94 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    96 rdf:type schema:DefinedTerm
    97 sg:journal.1136692 schema:issn 1063-7826
    98 1090-6479
    99 schema:name Semiconductors
    100 schema:publisher Pleiades Publishing
    101 rdf:type schema:Periodical
    102 sg:person.013123321516.17 schema:affiliation grid-institutes:grid.425081.a
    103 schema:familyName Andronov
    104 schema:givenName A. A.
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013123321516.17
    106 rdf:type schema:Person
    107 sg:person.013462724352.52 schema:affiliation grid-institutes:grid.425081.a
    108 schema:familyName Dodin
    109 schema:givenName E. P.
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013462724352.52
    111 rdf:type schema:Person
    112 sg:person.015754340241.27 schema:affiliation grid-institutes:grid.425081.a
    113 schema:familyName Nozdrin
    114 schema:givenName Yu. N.
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015754340241.27
    116 rdf:type schema:Person
    117 sg:person.016111223516.13 schema:affiliation grid-institutes:grid.425081.a
    118 schema:familyName Zinchenko
    119 schema:givenName D. I.
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016111223516.13
    121 rdf:type schema:Person
    122 sg:pub.10.1007/bf01339455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039883179
    123 https://doi.org/10.1007/bf01339455
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1038/417156a schema:sameAs https://app.dimensions.ai/details/publication/pub.1027918831
    126 https://doi.org/10.1038/417156a
    127 rdf:type schema:CreativeWork
    128 grid-institutes:grid.425081.a schema:alternateName Institute for Physics of Microstructures, Russian Academy of Sciences, 603950, Nizhni Novgorod, Russia
    129 schema:name Institute for Physics of Microstructures, Russian Academy of Sciences, 603950, Nizhni Novgorod, Russia
    130 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...