Renormalization of the band gap in highly photoexcited type-II ZnSe/BeTe structures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-02-10

AUTHORS

S. V. Zaitsev, D. R. Yakovlev, A. Waag

ABSTRACT

For the type-II ZnSe/BeTe heterostructures, a large (∼0.1 eV) red shift of the edge of interband recombination in the ZnSe layers is observed at high densities of spatially separated photoexcited electrons and holes (∼1013 cm−2). The observed magnitude of renormalization of the band gap exceeds the magnitudes predicted by the multiparticle theory for dense type-I electron-hole systems at the same concentrations of two-dimensional charge carriers. Numerical calculations show that macroscopic electric fields induced by separated charges have a profound effect on the energy of direct transitions in type-II structures, resulting in an additional decrease in the energy of the transitions. In wide structures, where the ZnSe layer thickness is ≳ 15 nm, the renormalization effect is less pronounced. This is attributed to incomplete spatial separation of photoexcited charge carriers in the case of profound band bending and, thus, to the less-pronounced effect of electric fields. More... »

PAGES

212-217

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782609020183

DOI

http://dx.doi.org/10.1134/s1063782609020183

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014596174


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia", 
          "id": "http://www.grid.ac/institutes/grid.418975.6", 
          "name": [
            "Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaitsev", 
        "givenName": "S. V.", 
        "id": "sg:person.011610151633.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011610151633.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Experimentelle Physik II, University of Dortmund, D-44227, Dortmund, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5675.1", 
          "name": [
            "Experimentelle Physik II, University of Dortmund, D-44227, Dortmund, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yakovlev", 
        "givenName": "D. R.", 
        "id": "sg:person.015630456362.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015630456362.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Semiconductor Technology, Braunschweig Technical University, D-38106, Braunschweig, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Semiconductor Technology, Braunschweig Technical University, D-38106, Braunschweig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Waag", 
        "givenName": "A.", 
        "id": "sg:person.01046655025.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046655025.07"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009-02-10", 
    "datePublishedReg": "2009-02-10", 
    "description": "For the type-II ZnSe/BeTe heterostructures, a large (\u223c0.1 eV) red shift of the edge of interband recombination in the ZnSe layers is observed at high densities of spatially separated photoexcited electrons and holes (\u223c1013 cm\u22122). The observed magnitude of renormalization of the band gap exceeds the magnitudes predicted by the multiparticle theory for dense type-I electron-hole systems at the same concentrations of two-dimensional charge carriers. Numerical calculations show that macroscopic electric fields induced by separated charges have a profound effect on the energy of direct transitions in type-II structures, resulting in an additional decrease in the energy of the transitions. In wide structures, where the ZnSe layer thickness is \u2273 15 nm, the renormalization effect is less pronounced. This is attributed to incomplete spatial separation of photoexcited charge carriers in the case of profound band bending and, thus, to the less-pronounced effect of electric fields.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063782609020183", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "43"
      }
    ], 
    "keywords": [
      "two-dimensional charge carriers", 
      "band gap", 
      "electric field", 
      "multiparticle theory", 
      "electron-hole system", 
      "charge carriers", 
      "ZnSe layer thickness", 
      "macroscopic electric field", 
      "numerical calculations", 
      "renormalization effects", 
      "type II structure", 
      "large red shift", 
      "interband recombination", 
      "direct transition", 
      "red shift", 
      "ZnSe layers", 
      "renormalization", 
      "observed magnitude", 
      "spatial separation", 
      "layer thickness", 
      "energy", 
      "field", 
      "wide structure", 
      "transition", 
      "electrons", 
      "heterostructures", 
      "high density", 
      "theory", 
      "holes", 
      "gap", 
      "calculations", 
      "structure", 
      "magnitude", 
      "carriers", 
      "band", 
      "edge", 
      "charge", 
      "recombination", 
      "density", 
      "shift", 
      "layer", 
      "thickness", 
      "system", 
      "dense type", 
      "cases", 
      "effect", 
      "separation", 
      "types", 
      "profound effect", 
      "additional decrease", 
      "decrease", 
      "concentration", 
      "same concentration"
    ], 
    "name": "Renormalization of the band gap in highly photoexcited type-II ZnSe/BeTe structures", 
    "pagination": "212-217", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014596174"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782609020183"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782609020183", 
      "https://app.dimensions.ai/details/publication/pub.1014596174"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_481.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063782609020183"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782609020183'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782609020183'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782609020183'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782609020183'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      21 PREDICATES      79 URIs      70 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782609020183 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 anzsrc-for:0206
4 schema:author N0396c6e229e24691a51a3a206ee8c302
5 schema:datePublished 2009-02-10
6 schema:datePublishedReg 2009-02-10
7 schema:description For the type-II ZnSe/BeTe heterostructures, a large (∼0.1 eV) red shift of the edge of interband recombination in the ZnSe layers is observed at high densities of spatially separated photoexcited electrons and holes (∼1013 cm−2). The observed magnitude of renormalization of the band gap exceeds the magnitudes predicted by the multiparticle theory for dense type-I electron-hole systems at the same concentrations of two-dimensional charge carriers. Numerical calculations show that macroscopic electric fields induced by separated charges have a profound effect on the energy of direct transitions in type-II structures, resulting in an additional decrease in the energy of the transitions. In wide structures, where the ZnSe layer thickness is ≳ 15 nm, the renormalization effect is less pronounced. This is attributed to incomplete spatial separation of photoexcited charge carriers in the case of profound band bending and, thus, to the less-pronounced effect of electric fields.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N001720b4ee2b431286d5591c1f2846e7
12 Nc34cdd6ef580492aab7573a40f39c566
13 sg:journal.1136692
14 schema:keywords ZnSe layer thickness
15 ZnSe layers
16 additional decrease
17 band
18 band gap
19 calculations
20 carriers
21 cases
22 charge
23 charge carriers
24 concentration
25 decrease
26 dense type
27 density
28 direct transition
29 edge
30 effect
31 electric field
32 electron-hole system
33 electrons
34 energy
35 field
36 gap
37 heterostructures
38 high density
39 holes
40 interband recombination
41 large red shift
42 layer
43 layer thickness
44 macroscopic electric field
45 magnitude
46 multiparticle theory
47 numerical calculations
48 observed magnitude
49 profound effect
50 recombination
51 red shift
52 renormalization
53 renormalization effects
54 same concentration
55 separation
56 shift
57 spatial separation
58 structure
59 system
60 theory
61 thickness
62 transition
63 two-dimensional charge carriers
64 type II structure
65 types
66 wide structure
67 schema:name Renormalization of the band gap in highly photoexcited type-II ZnSe/BeTe structures
68 schema:pagination 212-217
69 schema:productId N1be170ed22cd4c4486371ff8e8a20acf
70 Nb61eb91077324d8d9fd53927e893464b
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014596174
72 https://doi.org/10.1134/s1063782609020183
73 schema:sdDatePublished 2022-05-20T07:25
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher N1f66ad2dff8844e0b71067028cb8bb83
76 schema:url https://doi.org/10.1134/s1063782609020183
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N001720b4ee2b431286d5591c1f2846e7 schema:issueNumber 2
81 rdf:type schema:PublicationIssue
82 N0396c6e229e24691a51a3a206ee8c302 rdf:first sg:person.011610151633.09
83 rdf:rest N20acdaa5ce7c437d82c25dfc6d3458f6
84 N1be170ed22cd4c4486371ff8e8a20acf schema:name doi
85 schema:value 10.1134/s1063782609020183
86 rdf:type schema:PropertyValue
87 N1f66ad2dff8844e0b71067028cb8bb83 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N20acdaa5ce7c437d82c25dfc6d3458f6 rdf:first sg:person.015630456362.36
90 rdf:rest N4eee70bb04f845d69a1ece795ea0a077
91 N4eee70bb04f845d69a1ece795ea0a077 rdf:first sg:person.01046655025.07
92 rdf:rest rdf:nil
93 Nb61eb91077324d8d9fd53927e893464b schema:name dimensions_id
94 schema:value pub.1014596174
95 rdf:type schema:PropertyValue
96 Nc34cdd6ef580492aab7573a40f39c566 schema:volumeNumber 43
97 rdf:type schema:PublicationVolume
98 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
99 schema:name Physical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
102 schema:name Condensed Matter Physics
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
105 schema:name Quantum Physics
106 rdf:type schema:DefinedTerm
107 sg:journal.1136692 schema:issn 1063-7826
108 1090-6479
109 schema:name Semiconductors
110 schema:publisher Pleiades Publishing
111 rdf:type schema:Periodical
112 sg:person.01046655025.07 schema:affiliation grid-institutes:None
113 schema:familyName Waag
114 schema:givenName A.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046655025.07
116 rdf:type schema:Person
117 sg:person.011610151633.09 schema:affiliation grid-institutes:grid.418975.6
118 schema:familyName Zaitsev
119 schema:givenName S. V.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011610151633.09
121 rdf:type schema:Person
122 sg:person.015630456362.36 schema:affiliation grid-institutes:grid.5675.1
123 schema:familyName Yakovlev
124 schema:givenName D. R.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015630456362.36
126 rdf:type schema:Person
127 grid-institutes:None schema:alternateName Institute of Semiconductor Technology, Braunschweig Technical University, D-38106, Braunschweig, Germany
128 schema:name Institute of Semiconductor Technology, Braunschweig Technical University, D-38106, Braunschweig, Germany
129 rdf:type schema:Organization
130 grid-institutes:grid.418975.6 schema:alternateName Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia
131 schema:name Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia
132 rdf:type schema:Organization
133 grid-institutes:grid.5675.1 schema:alternateName Experimentelle Physik II, University of Dortmund, D-44227, Dortmund, Germany
134 schema:name Experimentelle Physik II, University of Dortmund, D-44227, Dortmund, Germany
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...