Renormalization of the band gap in highly photoexcited type-II ZnSe/BeTe structures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-02-10

AUTHORS

S. V. Zaitsev, D. R. Yakovlev, A. Waag

ABSTRACT

For the type-II ZnSe/BeTe heterostructures, a large (∼0.1 eV) red shift of the edge of interband recombination in the ZnSe layers is observed at high densities of spatially separated photoexcited electrons and holes (∼1013 cm−2). The observed magnitude of renormalization of the band gap exceeds the magnitudes predicted by the multiparticle theory for dense type-I electron-hole systems at the same concentrations of two-dimensional charge carriers. Numerical calculations show that macroscopic electric fields induced by separated charges have a profound effect on the energy of direct transitions in type-II structures, resulting in an additional decrease in the energy of the transitions. In wide structures, where the ZnSe layer thickness is ≳ 15 nm, the renormalization effect is less pronounced. This is attributed to incomplete spatial separation of photoexcited charge carriers in the case of profound band bending and, thus, to the less-pronounced effect of electric fields. More... »

PAGES

212-217

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782609020183

DOI

http://dx.doi.org/10.1134/s1063782609020183

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014596174


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia", 
          "id": "http://www.grid.ac/institutes/grid.418975.6", 
          "name": [
            "Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaitsev", 
        "givenName": "S. V.", 
        "id": "sg:person.011610151633.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011610151633.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Experimentelle Physik II, University of Dortmund, D-44227, Dortmund, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5675.1", 
          "name": [
            "Experimentelle Physik II, University of Dortmund, D-44227, Dortmund, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yakovlev", 
        "givenName": "D. R.", 
        "id": "sg:person.015630456362.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015630456362.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Semiconductor Technology, Braunschweig Technical University, D-38106, Braunschweig, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Semiconductor Technology, Braunschweig Technical University, D-38106, Braunschweig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Waag", 
        "givenName": "A.", 
        "id": "sg:person.01046655025.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046655025.07"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009-02-10", 
    "datePublishedReg": "2009-02-10", 
    "description": "For the type-II ZnSe/BeTe heterostructures, a large (\u223c0.1 eV) red shift of the edge of interband recombination in the ZnSe layers is observed at high densities of spatially separated photoexcited electrons and holes (\u223c1013 cm\u22122). The observed magnitude of renormalization of the band gap exceeds the magnitudes predicted by the multiparticle theory for dense type-I electron-hole systems at the same concentrations of two-dimensional charge carriers. Numerical calculations show that macroscopic electric fields induced by separated charges have a profound effect on the energy of direct transitions in type-II structures, resulting in an additional decrease in the energy of the transitions. In wide structures, where the ZnSe layer thickness is \u2273 15 nm, the renormalization effect is less pronounced. This is attributed to incomplete spatial separation of photoexcited charge carriers in the case of profound band bending and, thus, to the less-pronounced effect of electric fields.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063782609020183", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "43"
      }
    ], 
    "keywords": [
      "electric field", 
      "ZnSe layer thickness", 
      "charge carriers", 
      "band gap", 
      "macroscopic electric field", 
      "layer thickness", 
      "two-dimensional charge carriers", 
      "numerical calculations", 
      "ZnSe layers", 
      "interband recombination", 
      "high density", 
      "wide structure", 
      "energy", 
      "direct transition", 
      "spatial separation", 
      "ZnSe/BeTe heterostructures", 
      "heterostructures", 
      "layer", 
      "thickness", 
      "structure", 
      "field", 
      "dense type", 
      "carriers", 
      "observed magnitude", 
      "magnitude", 
      "separation", 
      "density", 
      "holes", 
      "gap", 
      "effect", 
      "edge", 
      "charge", 
      "red shift", 
      "transition", 
      "types", 
      "system", 
      "calculations", 
      "additional decrease", 
      "electrons", 
      "profound effect", 
      "band", 
      "concentration", 
      "recombination", 
      "decrease", 
      "theory", 
      "same concentration", 
      "large red shift", 
      "electron-hole system", 
      "multiparticle theory", 
      "cases", 
      "shift", 
      "renormalization effects", 
      "renormalization", 
      "BeTe heterostructures", 
      "incomplete spatial separation", 
      "profound band", 
      "ZnSe/BeTe structures", 
      "BeTe structures"
    ], 
    "name": "Renormalization of the band gap in highly photoexcited type-II ZnSe/BeTe structures", 
    "pagination": "212-217", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014596174"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782609020183"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782609020183", 
      "https://app.dimensions.ai/details/publication/pub.1014596174"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063782609020183"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782609020183'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782609020183'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782609020183'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782609020183'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      21 PREDICATES      84 URIs      75 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782609020183 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 anzsrc-for:0206
4 schema:author N9fefe894c39b479599ec8e3f90ee22b5
5 schema:datePublished 2009-02-10
6 schema:datePublishedReg 2009-02-10
7 schema:description For the type-II ZnSe/BeTe heterostructures, a large (∼0.1 eV) red shift of the edge of interband recombination in the ZnSe layers is observed at high densities of spatially separated photoexcited electrons and holes (∼1013 cm−2). The observed magnitude of renormalization of the band gap exceeds the magnitudes predicted by the multiparticle theory for dense type-I electron-hole systems at the same concentrations of two-dimensional charge carriers. Numerical calculations show that macroscopic electric fields induced by separated charges have a profound effect on the energy of direct transitions in type-II structures, resulting in an additional decrease in the energy of the transitions. In wide structures, where the ZnSe layer thickness is ≳ 15 nm, the renormalization effect is less pronounced. This is attributed to incomplete spatial separation of photoexcited charge carriers in the case of profound band bending and, thus, to the less-pronounced effect of electric fields.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N14a984e2236b4656a69613643c9efe65
12 Ne976ce6609f9459c862377594ee8e72b
13 sg:journal.1136692
14 schema:keywords BeTe heterostructures
15 BeTe structures
16 ZnSe layer thickness
17 ZnSe layers
18 ZnSe/BeTe heterostructures
19 ZnSe/BeTe structures
20 additional decrease
21 band
22 band gap
23 calculations
24 carriers
25 cases
26 charge
27 charge carriers
28 concentration
29 decrease
30 dense type
31 density
32 direct transition
33 edge
34 effect
35 electric field
36 electron-hole system
37 electrons
38 energy
39 field
40 gap
41 heterostructures
42 high density
43 holes
44 incomplete spatial separation
45 interband recombination
46 large red shift
47 layer
48 layer thickness
49 macroscopic electric field
50 magnitude
51 multiparticle theory
52 numerical calculations
53 observed magnitude
54 profound band
55 profound effect
56 recombination
57 red shift
58 renormalization
59 renormalization effects
60 same concentration
61 separation
62 shift
63 spatial separation
64 structure
65 system
66 theory
67 thickness
68 transition
69 two-dimensional charge carriers
70 types
71 wide structure
72 schema:name Renormalization of the band gap in highly photoexcited type-II ZnSe/BeTe structures
73 schema:pagination 212-217
74 schema:productId N35efd409065c48f3b1c0412733a994b6
75 Ndadffe3a44f5461fa89978840ef7c83d
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014596174
77 https://doi.org/10.1134/s1063782609020183
78 schema:sdDatePublished 2022-01-01T18:20
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher Na0091008dbfc4e7ab20a2051b807debe
81 schema:url https://doi.org/10.1134/s1063782609020183
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N14a984e2236b4656a69613643c9efe65 schema:volumeNumber 43
86 rdf:type schema:PublicationVolume
87 N172afdb591a94d489cd939ed4602471b rdf:first sg:person.01046655025.07
88 rdf:rest rdf:nil
89 N35efd409065c48f3b1c0412733a994b6 schema:name dimensions_id
90 schema:value pub.1014596174
91 rdf:type schema:PropertyValue
92 N97aebdf22ee547e7be18d7ca3cca9f01 rdf:first sg:person.015630456362.36
93 rdf:rest N172afdb591a94d489cd939ed4602471b
94 N9fefe894c39b479599ec8e3f90ee22b5 rdf:first sg:person.011610151633.09
95 rdf:rest N97aebdf22ee547e7be18d7ca3cca9f01
96 Na0091008dbfc4e7ab20a2051b807debe schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 Ndadffe3a44f5461fa89978840ef7c83d schema:name doi
99 schema:value 10.1134/s1063782609020183
100 rdf:type schema:PropertyValue
101 Ne976ce6609f9459c862377594ee8e72b schema:issueNumber 2
102 rdf:type schema:PublicationIssue
103 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
104 schema:name Physical Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
107 schema:name Condensed Matter Physics
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
110 schema:name Quantum Physics
111 rdf:type schema:DefinedTerm
112 sg:journal.1136692 schema:issn 1063-7826
113 1090-6479
114 schema:name Semiconductors
115 schema:publisher Pleiades Publishing
116 rdf:type schema:Periodical
117 sg:person.01046655025.07 schema:affiliation grid-institutes:None
118 schema:familyName Waag
119 schema:givenName A.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046655025.07
121 rdf:type schema:Person
122 sg:person.011610151633.09 schema:affiliation grid-institutes:grid.418975.6
123 schema:familyName Zaitsev
124 schema:givenName S. V.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011610151633.09
126 rdf:type schema:Person
127 sg:person.015630456362.36 schema:affiliation grid-institutes:grid.5675.1
128 schema:familyName Yakovlev
129 schema:givenName D. R.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015630456362.36
131 rdf:type schema:Person
132 grid-institutes:None schema:alternateName Institute of Semiconductor Technology, Braunschweig Technical University, D-38106, Braunschweig, Germany
133 schema:name Institute of Semiconductor Technology, Braunschweig Technical University, D-38106, Braunschweig, Germany
134 rdf:type schema:Organization
135 grid-institutes:grid.418975.6 schema:alternateName Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia
136 schema:name Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia
137 rdf:type schema:Organization
138 grid-institutes:grid.5675.1 schema:alternateName Experimentelle Physik II, University of Dortmund, D-44227, Dortmund, Germany
139 schema:name Experimentelle Physik II, University of Dortmund, D-44227, Dortmund, Germany
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...