Ontology type: schema:ScholarlyArticle
2009-02-10
AUTHORSS. V. Zaitsev, D. R. Yakovlev, A. Waag
ABSTRACTFor the type-II ZnSe/BeTe heterostructures, a large (∼0.1 eV) red shift of the edge of interband recombination in the ZnSe layers is observed at high densities of spatially separated photoexcited electrons and holes (∼1013 cm−2). The observed magnitude of renormalization of the band gap exceeds the magnitudes predicted by the multiparticle theory for dense type-I electron-hole systems at the same concentrations of two-dimensional charge carriers. Numerical calculations show that macroscopic electric fields induced by separated charges have a profound effect on the energy of direct transitions in type-II structures, resulting in an additional decrease in the energy of the transitions. In wide structures, where the ZnSe layer thickness is ≳ 15 nm, the renormalization effect is less pronounced. This is attributed to incomplete spatial separation of photoexcited charge carriers in the case of profound band bending and, thus, to the less-pronounced effect of electric fields. More... »
PAGES212-217
http://scigraph.springernature.com/pub.10.1134/s1063782609020183
DOIhttp://dx.doi.org/10.1134/s1063782609020183
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1014596174
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Condensed Matter Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Quantum Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia",
"id": "http://www.grid.ac/institutes/grid.418975.6",
"name": [
"Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia"
],
"type": "Organization"
},
"familyName": "Zaitsev",
"givenName": "S. V.",
"id": "sg:person.011610151633.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011610151633.09"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Experimentelle Physik II, University of Dortmund, D-44227, Dortmund, Germany",
"id": "http://www.grid.ac/institutes/grid.5675.1",
"name": [
"Experimentelle Physik II, University of Dortmund, D-44227, Dortmund, Germany"
],
"type": "Organization"
},
"familyName": "Yakovlev",
"givenName": "D. R.",
"id": "sg:person.015630456362.36",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015630456362.36"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Semiconductor Technology, Braunschweig Technical University, D-38106, Braunschweig, Germany",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Institute of Semiconductor Technology, Braunschweig Technical University, D-38106, Braunschweig, Germany"
],
"type": "Organization"
},
"familyName": "Waag",
"givenName": "A.",
"id": "sg:person.01046655025.07",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046655025.07"
],
"type": "Person"
}
],
"datePublished": "2009-02-10",
"datePublishedReg": "2009-02-10",
"description": "For the type-II ZnSe/BeTe heterostructures, a large (\u223c0.1 eV) red shift of the edge of interband recombination in the ZnSe layers is observed at high densities of spatially separated photoexcited electrons and holes (\u223c1013 cm\u22122). The observed magnitude of renormalization of the band gap exceeds the magnitudes predicted by the multiparticle theory for dense type-I electron-hole systems at the same concentrations of two-dimensional charge carriers. Numerical calculations show that macroscopic electric fields induced by separated charges have a profound effect on the energy of direct transitions in type-II structures, resulting in an additional decrease in the energy of the transitions. In wide structures, where the ZnSe layer thickness is \u2273 15 nm, the renormalization effect is less pronounced. This is attributed to incomplete spatial separation of photoexcited charge carriers in the case of profound band bending and, thus, to the less-pronounced effect of electric fields.",
"genre": "article",
"id": "sg:pub.10.1134/s1063782609020183",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136692",
"issn": [
"1063-7826",
"1090-6479"
],
"name": "Semiconductors",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "43"
}
],
"keywords": [
"two-dimensional charge carriers",
"band gap",
"electric field",
"multiparticle theory",
"electron-hole system",
"charge carriers",
"ZnSe layer thickness",
"macroscopic electric field",
"numerical calculations",
"renormalization effects",
"type II structure",
"large red shift",
"interband recombination",
"direct transition",
"red shift",
"ZnSe layers",
"renormalization",
"observed magnitude",
"spatial separation",
"layer thickness",
"energy",
"field",
"wide structure",
"transition",
"electrons",
"heterostructures",
"high density",
"theory",
"holes",
"gap",
"calculations",
"structure",
"magnitude",
"carriers",
"band",
"edge",
"charge",
"recombination",
"density",
"shift",
"layer",
"thickness",
"system",
"dense type",
"cases",
"effect",
"separation",
"types",
"profound effect",
"additional decrease",
"decrease",
"concentration",
"same concentration"
],
"name": "Renormalization of the band gap in highly photoexcited type-II ZnSe/BeTe structures",
"pagination": "212-217",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1014596174"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s1063782609020183"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s1063782609020183",
"https://app.dimensions.ai/details/publication/pub.1014596174"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:25",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_481.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s1063782609020183"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782609020183'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782609020183'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782609020183'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782609020183'
This table displays all metadata directly associated to this object as RDF triples.
135 TRIPLES
21 PREDICATES
79 URIs
70 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s1063782609020183 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0204 |
3 | ″ | ″ | anzsrc-for:0206 |
4 | ″ | schema:author | N0396c6e229e24691a51a3a206ee8c302 |
5 | ″ | schema:datePublished | 2009-02-10 |
6 | ″ | schema:datePublishedReg | 2009-02-10 |
7 | ″ | schema:description | For the type-II ZnSe/BeTe heterostructures, a large (∼0.1 eV) red shift of the edge of interband recombination in the ZnSe layers is observed at high densities of spatially separated photoexcited electrons and holes (∼1013 cm−2). The observed magnitude of renormalization of the band gap exceeds the magnitudes predicted by the multiparticle theory for dense type-I electron-hole systems at the same concentrations of two-dimensional charge carriers. Numerical calculations show that macroscopic electric fields induced by separated charges have a profound effect on the energy of direct transitions in type-II structures, resulting in an additional decrease in the energy of the transitions. In wide structures, where the ZnSe layer thickness is ≳ 15 nm, the renormalization effect is less pronounced. This is attributed to incomplete spatial separation of photoexcited charge carriers in the case of profound band bending and, thus, to the less-pronounced effect of electric fields. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N001720b4ee2b431286d5591c1f2846e7 |
12 | ″ | ″ | Nc34cdd6ef580492aab7573a40f39c566 |
13 | ″ | ″ | sg:journal.1136692 |
14 | ″ | schema:keywords | ZnSe layer thickness |
15 | ″ | ″ | ZnSe layers |
16 | ″ | ″ | additional decrease |
17 | ″ | ″ | band |
18 | ″ | ″ | band gap |
19 | ″ | ″ | calculations |
20 | ″ | ″ | carriers |
21 | ″ | ″ | cases |
22 | ″ | ″ | charge |
23 | ″ | ″ | charge carriers |
24 | ″ | ″ | concentration |
25 | ″ | ″ | decrease |
26 | ″ | ″ | dense type |
27 | ″ | ″ | density |
28 | ″ | ″ | direct transition |
29 | ″ | ″ | edge |
30 | ″ | ″ | effect |
31 | ″ | ″ | electric field |
32 | ″ | ″ | electron-hole system |
33 | ″ | ″ | electrons |
34 | ″ | ″ | energy |
35 | ″ | ″ | field |
36 | ″ | ″ | gap |
37 | ″ | ″ | heterostructures |
38 | ″ | ″ | high density |
39 | ″ | ″ | holes |
40 | ″ | ″ | interband recombination |
41 | ″ | ″ | large red shift |
42 | ″ | ″ | layer |
43 | ″ | ″ | layer thickness |
44 | ″ | ″ | macroscopic electric field |
45 | ″ | ″ | magnitude |
46 | ″ | ″ | multiparticle theory |
47 | ″ | ″ | numerical calculations |
48 | ″ | ″ | observed magnitude |
49 | ″ | ″ | profound effect |
50 | ″ | ″ | recombination |
51 | ″ | ″ | red shift |
52 | ″ | ″ | renormalization |
53 | ″ | ″ | renormalization effects |
54 | ″ | ″ | same concentration |
55 | ″ | ″ | separation |
56 | ″ | ″ | shift |
57 | ″ | ″ | spatial separation |
58 | ″ | ″ | structure |
59 | ″ | ″ | system |
60 | ″ | ″ | theory |
61 | ″ | ″ | thickness |
62 | ″ | ″ | transition |
63 | ″ | ″ | two-dimensional charge carriers |
64 | ″ | ″ | type II structure |
65 | ″ | ″ | types |
66 | ″ | ″ | wide structure |
67 | ″ | schema:name | Renormalization of the band gap in highly photoexcited type-II ZnSe/BeTe structures |
68 | ″ | schema:pagination | 212-217 |
69 | ″ | schema:productId | N1be170ed22cd4c4486371ff8e8a20acf |
70 | ″ | ″ | Nb61eb91077324d8d9fd53927e893464b |
71 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1014596174 |
72 | ″ | ″ | https://doi.org/10.1134/s1063782609020183 |
73 | ″ | schema:sdDatePublished | 2022-05-20T07:25 |
74 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
75 | ″ | schema:sdPublisher | N1f66ad2dff8844e0b71067028cb8bb83 |
76 | ″ | schema:url | https://doi.org/10.1134/s1063782609020183 |
77 | ″ | sgo:license | sg:explorer/license/ |
78 | ″ | sgo:sdDataset | articles |
79 | ″ | rdf:type | schema:ScholarlyArticle |
80 | N001720b4ee2b431286d5591c1f2846e7 | schema:issueNumber | 2 |
81 | ″ | rdf:type | schema:PublicationIssue |
82 | N0396c6e229e24691a51a3a206ee8c302 | rdf:first | sg:person.011610151633.09 |
83 | ″ | rdf:rest | N20acdaa5ce7c437d82c25dfc6d3458f6 |
84 | N1be170ed22cd4c4486371ff8e8a20acf | schema:name | doi |
85 | ″ | schema:value | 10.1134/s1063782609020183 |
86 | ″ | rdf:type | schema:PropertyValue |
87 | N1f66ad2dff8844e0b71067028cb8bb83 | schema:name | Springer Nature - SN SciGraph project |
88 | ″ | rdf:type | schema:Organization |
89 | N20acdaa5ce7c437d82c25dfc6d3458f6 | rdf:first | sg:person.015630456362.36 |
90 | ″ | rdf:rest | N4eee70bb04f845d69a1ece795ea0a077 |
91 | N4eee70bb04f845d69a1ece795ea0a077 | rdf:first | sg:person.01046655025.07 |
92 | ″ | rdf:rest | rdf:nil |
93 | Nb61eb91077324d8d9fd53927e893464b | schema:name | dimensions_id |
94 | ″ | schema:value | pub.1014596174 |
95 | ″ | rdf:type | schema:PropertyValue |
96 | Nc34cdd6ef580492aab7573a40f39c566 | schema:volumeNumber | 43 |
97 | ″ | rdf:type | schema:PublicationVolume |
98 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
99 | ″ | schema:name | Physical Sciences |
100 | ″ | rdf:type | schema:DefinedTerm |
101 | anzsrc-for:0204 | schema:inDefinedTermSet | anzsrc-for: |
102 | ″ | schema:name | Condensed Matter Physics |
103 | ″ | rdf:type | schema:DefinedTerm |
104 | anzsrc-for:0206 | schema:inDefinedTermSet | anzsrc-for: |
105 | ″ | schema:name | Quantum Physics |
106 | ″ | rdf:type | schema:DefinedTerm |
107 | sg:journal.1136692 | schema:issn | 1063-7826 |
108 | ″ | ″ | 1090-6479 |
109 | ″ | schema:name | Semiconductors |
110 | ″ | schema:publisher | Pleiades Publishing |
111 | ″ | rdf:type | schema:Periodical |
112 | sg:person.01046655025.07 | schema:affiliation | grid-institutes:None |
113 | ″ | schema:familyName | Waag |
114 | ″ | schema:givenName | A. |
115 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046655025.07 |
116 | ″ | rdf:type | schema:Person |
117 | sg:person.011610151633.09 | schema:affiliation | grid-institutes:grid.418975.6 |
118 | ″ | schema:familyName | Zaitsev |
119 | ″ | schema:givenName | S. V. |
120 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011610151633.09 |
121 | ″ | rdf:type | schema:Person |
122 | sg:person.015630456362.36 | schema:affiliation | grid-institutes:grid.5675.1 |
123 | ″ | schema:familyName | Yakovlev |
124 | ″ | schema:givenName | D. R. |
125 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015630456362.36 |
126 | ″ | rdf:type | schema:Person |
127 | grid-institutes:None | schema:alternateName | Institute of Semiconductor Technology, Braunschweig Technical University, D-38106, Braunschweig, Germany |
128 | ″ | schema:name | Institute of Semiconductor Technology, Braunschweig Technical University, D-38106, Braunschweig, Germany |
129 | ″ | rdf:type | schema:Organization |
130 | grid-institutes:grid.418975.6 | schema:alternateName | Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia |
131 | ″ | schema:name | Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia |
132 | ″ | rdf:type | schema:Organization |
133 | grid-institutes:grid.5675.1 | schema:alternateName | Experimentelle Physik II, University of Dortmund, D-44227, Dortmund, Germany |
134 | ″ | schema:name | Experimentelle Physik II, University of Dortmund, D-44227, Dortmund, Germany |
135 | ″ | rdf:type | schema:Organization |