Ontology type: schema:ScholarlyArticle
2008-12-17
AUTHORSN. A. Poklonski, S. A. Vyrko, A. G. Zabrodskii
ABSTRACTLow-frequency electrical capacitance of silicon crystals in the case of hopping migration of both electrons and bipolarons (electron pairs) via the defects of one type, which stabilizes the Fermi level near the midgap, is calculated. The crystals with two-level defects in three charge states (+1, 0, or −1) with a negative correlation energy are considered. It is shown that, as the absolute value of the external potential is increased, the capacitance of silicon containing defects with positive correlation energy increases, while that with defects with negative correlation energy decreases. The expression for the drift and diffusion components of current density for bipolarons hopping from defects with the charge state −1 to defects with the charge state +1 was derived for the first time. More... »
PAGES1388
http://scigraph.springernature.com/pub.10.1134/s1063782608120038
DOIhttp://dx.doi.org/10.1134/s1063782608120038
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1049781368
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Condensed Matter Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Quantum Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Belarusian State University, 220030, Minsk, Belarus",
"id": "http://www.grid.ac/institutes/grid.17678.3f",
"name": [
"Belarusian State University, 220030, Minsk, Belarus"
],
"type": "Organization"
},
"familyName": "Poklonski",
"givenName": "N. A.",
"id": "sg:person.015505352225.90",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505352225.90"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Belarusian State University, 220030, Minsk, Belarus",
"id": "http://www.grid.ac/institutes/grid.17678.3f",
"name": [
"Belarusian State University, 220030, Minsk, Belarus"
],
"type": "Organization"
},
"familyName": "Vyrko",
"givenName": "S. A.",
"id": "sg:person.0742524034.73",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742524034.73"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Zabrodskii",
"givenName": "A. G.",
"id": "sg:person.016623532707.36",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016623532707.36"
],
"type": "Person"
}
],
"datePublished": "2008-12-17",
"datePublishedReg": "2008-12-17",
"description": "Low-frequency electrical capacitance of silicon crystals in the case of hopping migration of both electrons and bipolarons (electron pairs) via the defects of one type, which stabilizes the Fermi level near the midgap, is calculated. The crystals with two-level defects in three charge states (+1, 0, or \u22121) with a negative correlation energy are considered. It is shown that, as the absolute value of the external potential is increased, the capacitance of silicon containing defects with positive correlation energy increases, while that with defects with negative correlation energy decreases. The expression for the drift and diffusion components of current density for bipolarons hopping from defects with the charge state \u22121 to defects with the charge state +1 was derived for the first time.",
"genre": "article",
"id": "sg:pub.10.1134/s1063782608120038",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136692",
"issn": [
"1063-7826",
"1090-6479"
],
"name": "Semiconductors",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "12",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "42"
}
],
"keywords": [
"charge state",
"negative correlation energy",
"correlation energy",
"two-level defects",
"Fermi level",
"external potential",
"energy increases",
"silicon crystals",
"electrons",
"bipolarons",
"current density",
"crystals",
"energy",
"calculation of capacitance",
"semiconductors",
"absolute value",
"diffusion component",
"midgap",
"state",
"silicon",
"first time",
"calculations",
"defects",
"electrical capacitance",
"density",
"capacitance",
"drift",
"potential",
"components",
"values",
"time",
"increase",
"cases",
"hop",
"types",
"levels",
"migration",
"expression"
],
"name": "Calculation of capacitance of self-compensated semiconductors with intercenter hops of one and two electrons (by the example of silicon with radiation defects)",
"pagination": "1388",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1049781368"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s1063782608120038"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s1063782608120038",
"https://app.dimensions.ai/details/publication/pub.1049781368"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:24",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_463.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s1063782608120038"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782608120038'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782608120038'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782608120038'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782608120038'
This table displays all metadata directly associated to this object as RDF triples.
117 TRIPLES
21 PREDICATES
64 URIs
55 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s1063782608120038 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0204 |
3 | ″ | ″ | anzsrc-for:0206 |
4 | ″ | schema:author | N7e4bfd9e642f4aefa567447c0e756339 |
5 | ″ | schema:datePublished | 2008-12-17 |
6 | ″ | schema:datePublishedReg | 2008-12-17 |
7 | ″ | schema:description | Low-frequency electrical capacitance of silicon crystals in the case of hopping migration of both electrons and bipolarons (electron pairs) via the defects of one type, which stabilizes the Fermi level near the midgap, is calculated. The crystals with two-level defects in three charge states (+1, 0, or −1) with a negative correlation energy are considered. It is shown that, as the absolute value of the external potential is increased, the capacitance of silicon containing defects with positive correlation energy increases, while that with defects with negative correlation energy decreases. The expression for the drift and diffusion components of current density for bipolarons hopping from defects with the charge state −1 to defects with the charge state +1 was derived for the first time. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N2a0e239aa2e94b40b48fc00a932a5c3e |
12 | ″ | ″ | N51ef12ff71624c9bb161bb3dda97c353 |
13 | ″ | ″ | sg:journal.1136692 |
14 | ″ | schema:keywords | Fermi level |
15 | ″ | ″ | absolute value |
16 | ″ | ″ | bipolarons |
17 | ″ | ″ | calculation of capacitance |
18 | ″ | ″ | calculations |
19 | ″ | ″ | capacitance |
20 | ″ | ″ | cases |
21 | ″ | ″ | charge state |
22 | ″ | ″ | components |
23 | ″ | ″ | correlation energy |
24 | ″ | ″ | crystals |
25 | ″ | ″ | current density |
26 | ″ | ″ | defects |
27 | ″ | ″ | density |
28 | ″ | ″ | diffusion component |
29 | ″ | ″ | drift |
30 | ″ | ″ | electrical capacitance |
31 | ″ | ″ | electrons |
32 | ″ | ″ | energy |
33 | ″ | ″ | energy increases |
34 | ″ | ″ | expression |
35 | ″ | ″ | external potential |
36 | ″ | ″ | first time |
37 | ″ | ″ | hop |
38 | ″ | ″ | increase |
39 | ″ | ″ | levels |
40 | ″ | ″ | midgap |
41 | ″ | ″ | migration |
42 | ″ | ″ | negative correlation energy |
43 | ″ | ″ | potential |
44 | ″ | ″ | semiconductors |
45 | ″ | ″ | silicon |
46 | ″ | ″ | silicon crystals |
47 | ″ | ″ | state |
48 | ″ | ″ | time |
49 | ″ | ″ | two-level defects |
50 | ″ | ″ | types |
51 | ″ | ″ | values |
52 | ″ | schema:name | Calculation of capacitance of self-compensated semiconductors with intercenter hops of one and two electrons (by the example of silicon with radiation defects) |
53 | ″ | schema:pagination | 1388 |
54 | ″ | schema:productId | N861d61308a704d06a2c69b49de1dc1dd |
55 | ″ | ″ | Ne1eba920526c4f32bf0adaa2ddf1daf1 |
56 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1049781368 |
57 | ″ | ″ | https://doi.org/10.1134/s1063782608120038 |
58 | ″ | schema:sdDatePublished | 2022-05-20T07:24 |
59 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
60 | ″ | schema:sdPublisher | N0531f699b4224a3b8aee088c9edef2b4 |
61 | ″ | schema:url | https://doi.org/10.1134/s1063782608120038 |
62 | ″ | sgo:license | sg:explorer/license/ |
63 | ″ | sgo:sdDataset | articles |
64 | ″ | rdf:type | schema:ScholarlyArticle |
65 | N0531f699b4224a3b8aee088c9edef2b4 | schema:name | Springer Nature - SN SciGraph project |
66 | ″ | rdf:type | schema:Organization |
67 | N1b771c7f11304bd39c46609457aed924 | rdf:first | sg:person.0742524034.73 |
68 | ″ | rdf:rest | N26c1d1c188c54457bfc88730934cfdc1 |
69 | N26c1d1c188c54457bfc88730934cfdc1 | rdf:first | sg:person.016623532707.36 |
70 | ″ | rdf:rest | rdf:nil |
71 | N2a0e239aa2e94b40b48fc00a932a5c3e | schema:volumeNumber | 42 |
72 | ″ | rdf:type | schema:PublicationVolume |
73 | N51ef12ff71624c9bb161bb3dda97c353 | schema:issueNumber | 12 |
74 | ″ | rdf:type | schema:PublicationIssue |
75 | N7e4bfd9e642f4aefa567447c0e756339 | rdf:first | sg:person.015505352225.90 |
76 | ″ | rdf:rest | N1b771c7f11304bd39c46609457aed924 |
77 | N861d61308a704d06a2c69b49de1dc1dd | schema:name | doi |
78 | ″ | schema:value | 10.1134/s1063782608120038 |
79 | ″ | rdf:type | schema:PropertyValue |
80 | Ne1eba920526c4f32bf0adaa2ddf1daf1 | schema:name | dimensions_id |
81 | ″ | schema:value | pub.1049781368 |
82 | ″ | rdf:type | schema:PropertyValue |
83 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
84 | ″ | schema:name | Physical Sciences |
85 | ″ | rdf:type | schema:DefinedTerm |
86 | anzsrc-for:0204 | schema:inDefinedTermSet | anzsrc-for: |
87 | ″ | schema:name | Condensed Matter Physics |
88 | ″ | rdf:type | schema:DefinedTerm |
89 | anzsrc-for:0206 | schema:inDefinedTermSet | anzsrc-for: |
90 | ″ | schema:name | Quantum Physics |
91 | ″ | rdf:type | schema:DefinedTerm |
92 | sg:journal.1136692 | schema:issn | 1063-7826 |
93 | ″ | ″ | 1090-6479 |
94 | ″ | schema:name | Semiconductors |
95 | ″ | schema:publisher | Pleiades Publishing |
96 | ″ | rdf:type | schema:Periodical |
97 | sg:person.015505352225.90 | schema:affiliation | grid-institutes:grid.17678.3f |
98 | ″ | schema:familyName | Poklonski |
99 | ″ | schema:givenName | N. A. |
100 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505352225.90 |
101 | ″ | rdf:type | schema:Person |
102 | sg:person.016623532707.36 | schema:affiliation | grid-institutes:grid.423485.c |
103 | ″ | schema:familyName | Zabrodskii |
104 | ″ | schema:givenName | A. G. |
105 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016623532707.36 |
106 | ″ | rdf:type | schema:Person |
107 | sg:person.0742524034.73 | schema:affiliation | grid-institutes:grid.17678.3f |
108 | ″ | schema:familyName | Vyrko |
109 | ″ | schema:givenName | S. A. |
110 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742524034.73 |
111 | ″ | rdf:type | schema:Person |
112 | grid-institutes:grid.17678.3f | schema:alternateName | Belarusian State University, 220030, Minsk, Belarus |
113 | ″ | schema:name | Belarusian State University, 220030, Minsk, Belarus |
114 | ″ | rdf:type | schema:Organization |
115 | grid-institutes:grid.423485.c | schema:alternateName | Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia |
116 | ″ | schema:name | Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia |
117 | ″ | rdf:type | schema:Organization |