Relaxation of excitons in semimagnetic asymmetric double quantum wells View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-07-11

AUTHORS

S. V. Zaitsev, A. S. Brichkin, P. S. Dorozhkin, G. Bacher

ABSTRACT

The steady-state circular-polarized photoluminescence in semimagnetic asymmetric double quantum wells based on Cd(Mn,Mg)Te is studied thoroughly in relation to the polarization of intrawell nonresonance photoexcitation in magnetic fields Bup to 9 T. In low fields B, in which the exciton in the magnetic well is higher in energy than the exciton in the nonmagnetic well, the complete interwell relaxation of excitons is observed. In fields higher than Bc = 3–6 T, at which the exciton level in the magnetic well crosses the field-independent exciton level in the nonmagnetic well, the magnetic-field-induced red shift of the exciton in the magnetic well is accompanied by the establishment of a nonequilibrium distribution of excitons. This suggests that spin relaxation plays an important part in the interwell separation of excitons in the spin-dependent potential of the heterostructure. The efficiency of spin relaxation is controlled by mixing of valence band states in the nonmagnetic well and by splitting of heavy and light holes Δhh-lh. Different modes of interwell tunneling are observed in different field regions separated by the field Bc* > Bc corresponding to the crossing of the localized excitons in the nonmagnetic well and free excitons in the magnetic well. Possible mechanisms of interwell tunnel relaxation are discussed. More... »

PAGES

813-827

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782608070117

DOI

http://dx.doi.org/10.1134/s1063782608070117

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053160254


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia", 
          "id": "http://www.grid.ac/institutes/grid.418975.6", 
          "name": [
            "Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaitsev", 
        "givenName": "S. V.", 
        "id": "sg:person.011610151633.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011610151633.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia", 
          "id": "http://www.grid.ac/institutes/grid.418975.6", 
          "name": [
            "Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brichkin", 
        "givenName": "A. S.", 
        "id": "sg:person.012567653177.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012567653177.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia", 
          "id": "http://www.grid.ac/institutes/grid.418975.6", 
          "name": [
            "Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dorozhkin", 
        "givenName": "P. S.", 
        "id": "sg:person.01125743642.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125743642.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lehrstuhl Werkstoffe der Electrotechnik, Universit\u00e4t Duisburg-Essen, D-47057, Duisburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5718.b", 
          "name": [
            "Lehrstuhl Werkstoffe der Electrotechnik, Universit\u00e4t Duisburg-Essen, D-47057, Duisburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bacher", 
        "givenName": "G.", 
        "id": "sg:person.0771451125.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771451125.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-662-03770-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007919642", 
          "https://doi.org/10.1007/978-3-662-03770-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature00943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032904206", 
          "https://doi.org/10.1038/nature00943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/417047a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043620147", 
          "https://doi.org/10.1038/417047a"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-07-11", 
    "datePublishedReg": "2008-07-11", 
    "description": "The steady-state circular-polarized photoluminescence in semimagnetic asymmetric double quantum wells based on Cd(Mn,Mg)Te is studied thoroughly in relation to the polarization of intrawell nonresonance photoexcitation in magnetic fields Bup to 9 T. In low fields B, in which the exciton in the magnetic well is higher in energy than the exciton in the nonmagnetic well, the complete interwell relaxation of excitons is observed. In fields higher than Bc = 3\u20136 T, at which the exciton level in the magnetic well crosses the field-independent exciton level in the nonmagnetic well, the magnetic-field-induced red shift of the exciton in the magnetic well is accompanied by the establishment of a nonequilibrium distribution of excitons. This suggests that spin relaxation plays an important part in the interwell separation of excitons in the spin-dependent potential of the heterostructure. The efficiency of spin relaxation is controlled by mixing of valence band states in the nonmagnetic well and by splitting of heavy and light holes \u0394hh-lh. Different modes of interwell tunneling are observed in different field regions separated by the field Bc* > Bc corresponding to the crossing of the localized excitons in the nonmagnetic well and free excitons in the magnetic well. Possible mechanisms of interwell tunnel relaxation are discussed.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063782608070117", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "42"
      }
    ], 
    "keywords": [
      "semimagnetic asymmetric double quantum wells", 
      "asymmetric double quantum wells", 
      "double quantum wells", 
      "magnetic well", 
      "nonmagnetic well", 
      "quantum wells", 
      "exciton levels", 
      "spin relaxation", 
      "relaxation of excitons", 
      "low fields B", 
      "spin-dependent potential", 
      "valence band states", 
      "interwell tunneling", 
      "interwell separation", 
      "field B", 
      "field Bc", 
      "tunnel relaxation", 
      "excitons", 
      "nonequilibrium distribution", 
      "field region", 
      "different field regions", 
      "band states", 
      "free excitons", 
      "red shift", 
      "wells", 
      "relaxation", 
      "heterostructures", 
      "photoexcitation", 
      "tunneling", 
      "photoluminescence", 
      "polarization", 
      "splitting", 
      "nonmagnetic", 
      "energy", 
      "field", 
      "crossing", 
      "mode", 
      "shift", 
      "state", 
      "possible mechanism", 
      "different modes", 
      "distribution", 
      "separation", 
      "region", 
      "efficiency", 
      "potential", 
      "mechanism", 
      "relation", 
      "BC", 
      "part", 
      "levels", 
      "important part", 
      "BUP", 
      "establishment", 
      "steady-state circular-polarized photoluminescence", 
      "circular-polarized photoluminescence", 
      "intrawell nonresonance photoexcitation", 
      "nonresonance photoexcitation", 
      "magnetic fields Bup", 
      "fields Bup", 
      "complete interwell relaxation", 
      "interwell relaxation", 
      "field-independent exciton level", 
      "light holes \u0394hh-lh", 
      "holes \u0394hh-lh", 
      "\u0394hh-lh", 
      "interwell tunnel relaxation"
    ], 
    "name": "Relaxation of excitons in semimagnetic asymmetric double quantum wells", 
    "pagination": "813-827", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053160254"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782608070117"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782608070117", 
      "https://app.dimensions.ai/details/publication/pub.1053160254"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_472.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063782608070117"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782608070117'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782608070117'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782608070117'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782608070117'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      22 PREDICATES      95 URIs      84 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782608070117 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Na2a59d28067046d5bb08b3f2d9bfdcf6
4 schema:citation sg:pub.10.1007/978-3-662-03770-6
5 sg:pub.10.1038/417047a
6 sg:pub.10.1038/nature00943
7 schema:datePublished 2008-07-11
8 schema:datePublishedReg 2008-07-11
9 schema:description The steady-state circular-polarized photoluminescence in semimagnetic asymmetric double quantum wells based on Cd(Mn,Mg)Te is studied thoroughly in relation to the polarization of intrawell nonresonance photoexcitation in magnetic fields Bup to 9 T. In low fields B, in which the exciton in the magnetic well is higher in energy than the exciton in the nonmagnetic well, the complete interwell relaxation of excitons is observed. In fields higher than Bc = 3–6 T, at which the exciton level in the magnetic well crosses the field-independent exciton level in the nonmagnetic well, the magnetic-field-induced red shift of the exciton in the magnetic well is accompanied by the establishment of a nonequilibrium distribution of excitons. This suggests that spin relaxation plays an important part in the interwell separation of excitons in the spin-dependent potential of the heterostructure. The efficiency of spin relaxation is controlled by mixing of valence band states in the nonmagnetic well and by splitting of heavy and light holes Δhh-lh. Different modes of interwell tunneling are observed in different field regions separated by the field Bc* > Bc corresponding to the crossing of the localized excitons in the nonmagnetic well and free excitons in the magnetic well. Possible mechanisms of interwell tunnel relaxation are discussed.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N4c940b6dcebb45cdaa2acbef38b48343
14 Nc1eeff980df243808e1041acfa422edd
15 sg:journal.1136692
16 schema:keywords BC
17 BUP
18 asymmetric double quantum wells
19 band states
20 circular-polarized photoluminescence
21 complete interwell relaxation
22 crossing
23 different field regions
24 different modes
25 distribution
26 double quantum wells
27 efficiency
28 energy
29 establishment
30 exciton levels
31 excitons
32 field
33 field B
34 field Bc
35 field region
36 field-independent exciton level
37 fields Bup
38 free excitons
39 heterostructures
40 holes Δhh-lh
41 important part
42 interwell relaxation
43 interwell separation
44 interwell tunnel relaxation
45 interwell tunneling
46 intrawell nonresonance photoexcitation
47 levels
48 light holes Δhh-lh
49 low fields B
50 magnetic fields Bup
51 magnetic well
52 mechanism
53 mode
54 nonequilibrium distribution
55 nonmagnetic
56 nonmagnetic well
57 nonresonance photoexcitation
58 part
59 photoexcitation
60 photoluminescence
61 polarization
62 possible mechanism
63 potential
64 quantum wells
65 red shift
66 region
67 relation
68 relaxation
69 relaxation of excitons
70 semimagnetic asymmetric double quantum wells
71 separation
72 shift
73 spin relaxation
74 spin-dependent potential
75 splitting
76 state
77 steady-state circular-polarized photoluminescence
78 tunnel relaxation
79 tunneling
80 valence band states
81 wells
82 Δhh-lh
83 schema:name Relaxation of excitons in semimagnetic asymmetric double quantum wells
84 schema:pagination 813-827
85 schema:productId N86ff6be158924084ab8094b1c89acf27
86 Nd0d9d33fbf55460899047487649ecaf7
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053160254
88 https://doi.org/10.1134/s1063782608070117
89 schema:sdDatePublished 2021-11-01T18:12
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher Nd8be028c313748eaa08cf1e019a782f2
92 schema:url https://doi.org/10.1134/s1063782608070117
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N4c940b6dcebb45cdaa2acbef38b48343 schema:volumeNumber 42
97 rdf:type schema:PublicationVolume
98 N53ff631db3e342ca8a30d98b03928ed5 rdf:first sg:person.01125743642.29
99 rdf:rest N84d3ae2438b5417aa7e847c0de351fa4
100 N84d3ae2438b5417aa7e847c0de351fa4 rdf:first sg:person.0771451125.66
101 rdf:rest rdf:nil
102 N86ff6be158924084ab8094b1c89acf27 schema:name dimensions_id
103 schema:value pub.1053160254
104 rdf:type schema:PropertyValue
105 Na2a59d28067046d5bb08b3f2d9bfdcf6 rdf:first sg:person.011610151633.09
106 rdf:rest Nedf300f7c2c24700889a6a6f827015d7
107 Nc1eeff980df243808e1041acfa422edd schema:issueNumber 7
108 rdf:type schema:PublicationIssue
109 Nd0d9d33fbf55460899047487649ecaf7 schema:name doi
110 schema:value 10.1134/s1063782608070117
111 rdf:type schema:PropertyValue
112 Nd8be028c313748eaa08cf1e019a782f2 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 Nedf300f7c2c24700889a6a6f827015d7 rdf:first sg:person.012567653177.24
115 rdf:rest N53ff631db3e342ca8a30d98b03928ed5
116 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
117 schema:name Physical Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
120 schema:name Other Physical Sciences
121 rdf:type schema:DefinedTerm
122 sg:journal.1136692 schema:issn 1063-7826
123 1090-6479
124 schema:name Semiconductors
125 schema:publisher Pleiades Publishing
126 rdf:type schema:Periodical
127 sg:person.01125743642.29 schema:affiliation grid-institutes:grid.418975.6
128 schema:familyName Dorozhkin
129 schema:givenName P. S.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125743642.29
131 rdf:type schema:Person
132 sg:person.011610151633.09 schema:affiliation grid-institutes:grid.418975.6
133 schema:familyName Zaitsev
134 schema:givenName S. V.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011610151633.09
136 rdf:type schema:Person
137 sg:person.012567653177.24 schema:affiliation grid-institutes:grid.418975.6
138 schema:familyName Brichkin
139 schema:givenName A. S.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012567653177.24
141 rdf:type schema:Person
142 sg:person.0771451125.66 schema:affiliation grid-institutes:grid.5718.b
143 schema:familyName Bacher
144 schema:givenName G.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771451125.66
146 rdf:type schema:Person
147 sg:pub.10.1007/978-3-662-03770-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007919642
148 https://doi.org/10.1007/978-3-662-03770-6
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/417047a schema:sameAs https://app.dimensions.ai/details/publication/pub.1043620147
151 https://doi.org/10.1038/417047a
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/nature00943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032904206
154 https://doi.org/10.1038/nature00943
155 rdf:type schema:CreativeWork
156 grid-institutes:grid.418975.6 schema:alternateName Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia
157 schema:name Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia
158 rdf:type schema:Organization
159 grid-institutes:grid.5718.b schema:alternateName Lehrstuhl Werkstoffe der Electrotechnik, Universität Duisburg-Essen, D-47057, Duisburg, Germany
160 schema:name Lehrstuhl Werkstoffe der Electrotechnik, Universität Duisburg-Essen, D-47057, Duisburg, Germany
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...