Effect of hydrogen on anisotropy of the p-GaN growth rate in the case of side-wall MOCVD View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-02

AUTHORS

W. V. Lundin, A. E. Nikolaev, A. V. Sakharov, A. F. Tsatsul’nikov

ABSTRACT

The effect of the composition of the carrier gas on anisotropy of p-GaN growth rates in side-wall metal-organic chemical vapor deposition was studied. p-GaN layers with a nominal thickness of ∼400 nm were grown on side-walls of GaAs mesa stripes formed preliminarily by selective-area epitaxy on Si3N4. It is shown that, if hydrogen is used as the carrier gas, the p-GaN growth occurs mainly in the lateral direction, so that the p-GaN layer is either absent or is thin at the top faces of mesa stripes; in contrast, if nitrogen is used as the carrier gas, growth in the normal (0001) direction is prevalent, so that a p-GaN layer is formed at all faces of the mesa stripe. The results of our study are indicative of a significant role of hydrogen in the process of epitaxial growth of GaN and can be used in the development of technology of devices with p-n junctions based on GaN and with the use of selective-area growth. More... »

PAGES

232-237

Journal

TITLE

Semiconductors

ISSUE

2

VOLUME

42

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782608020218

DOI

http://dx.doi.org/10.1134/s1063782608020218

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008586742


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lundin", 
        "givenName": "W. V.", 
        "id": "sg:person.013543521751.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013543521751.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikolaev", 
        "givenName": "A. E.", 
        "id": "sg:person.07464610023.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07464610023.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sakharov", 
        "givenName": "A. V.", 
        "id": "sg:person.016272446141.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016272446141.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsatsul\u2019nikov", 
        "givenName": "A. F.", 
        "id": "sg:person.012131633577.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012131633577.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1063/1.2240307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057849539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jqe.2004.837005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061306416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.38.l1000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063062685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.45.l659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063078348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.46.l129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063080229"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-02", 
    "datePublishedReg": "2008-02-01", 
    "description": "The effect of the composition of the carrier gas on anisotropy of p-GaN growth rates in side-wall metal-organic chemical vapor deposition was studied. p-GaN layers with a nominal thickness of \u223c400 nm were grown on side-walls of GaAs mesa stripes formed preliminarily by selective-area epitaxy on Si3N4. It is shown that, if hydrogen is used as the carrier gas, the p-GaN growth occurs mainly in the lateral direction, so that the p-GaN layer is either absent or is thin at the top faces of mesa stripes; in contrast, if nitrogen is used as the carrier gas, growth in the normal (0001) direction is prevalent, so that a p-GaN layer is formed at all faces of the mesa stripe. The results of our study are indicative of a significant role of hydrogen in the process of epitaxial growth of GaN and can be used in the development of technology of devices with p-n junctions based on GaN and with the use of selective-area growth.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063782608020218", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "42"
      }
    ], 
    "name": "Effect of hydrogen on anisotropy of the p-GaN growth rate in the case of side-wall MOCVD", 
    "pagination": "232-237", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "28e8b08b991d4bd42da591dfaf90700d7b3000671595eb0374f96336bce1a400"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782608020218"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008586742"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782608020218", 
      "https://app.dimensions.ai/details/publication/pub.1008586742"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS1063782608020218"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782608020218'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782608020218'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782608020218'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782608020218'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782608020218 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N6680ad10b9e34cec8be80854ee9fbd90
4 schema:citation https://doi.org/10.1063/1.2240307
5 https://doi.org/10.1109/jqe.2004.837005
6 https://doi.org/10.1143/jjap.38.l1000
7 https://doi.org/10.1143/jjap.45.l659
8 https://doi.org/10.1143/jjap.46.l129
9 schema:datePublished 2008-02
10 schema:datePublishedReg 2008-02-01
11 schema:description The effect of the composition of the carrier gas on anisotropy of p-GaN growth rates in side-wall metal-organic chemical vapor deposition was studied. p-GaN layers with a nominal thickness of ∼400 nm were grown on side-walls of GaAs mesa stripes formed preliminarily by selective-area epitaxy on Si3N4. It is shown that, if hydrogen is used as the carrier gas, the p-GaN growth occurs mainly in the lateral direction, so that the p-GaN layer is either absent or is thin at the top faces of mesa stripes; in contrast, if nitrogen is used as the carrier gas, growth in the normal (0001) direction is prevalent, so that a p-GaN layer is formed at all faces of the mesa stripe. The results of our study are indicative of a significant role of hydrogen in the process of epitaxial growth of GaN and can be used in the development of technology of devices with p-n junctions based on GaN and with the use of selective-area growth.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf Nab7893353f4548e19aff67406f0ec8b9
16 Nd2bcd50166344a75bda9aa0e83d3e91d
17 sg:journal.1136692
18 schema:name Effect of hydrogen on anisotropy of the p-GaN growth rate in the case of side-wall MOCVD
19 schema:pagination 232-237
20 schema:productId N21fc6e1463254d58acd5e4ca184dc91e
21 N60ba6b25a9e24f488f2858fbbcd16856
22 N87cc4e7eb3134968ab47bd55e40001b7
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008586742
24 https://doi.org/10.1134/s1063782608020218
25 schema:sdDatePublished 2019-04-10T14:07
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N9d78557364be4aa2bc135881470e8e31
28 schema:url http://link.springer.com/10.1134%2FS1063782608020218
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N028374b1787e41d69f99943187cb1480 rdf:first sg:person.016272446141.43
33 rdf:rest N55204f5c8a2040ff81cc4461b3a35d7e
34 N21fc6e1463254d58acd5e4ca184dc91e schema:name dimensions_id
35 schema:value pub.1008586742
36 rdf:type schema:PropertyValue
37 N53da0a32e5624e9baabe40084e165ce1 rdf:first sg:person.07464610023.44
38 rdf:rest N028374b1787e41d69f99943187cb1480
39 N55204f5c8a2040ff81cc4461b3a35d7e rdf:first sg:person.012131633577.53
40 rdf:rest rdf:nil
41 N60ba6b25a9e24f488f2858fbbcd16856 schema:name doi
42 schema:value 10.1134/s1063782608020218
43 rdf:type schema:PropertyValue
44 N6680ad10b9e34cec8be80854ee9fbd90 rdf:first sg:person.013543521751.29
45 rdf:rest N53da0a32e5624e9baabe40084e165ce1
46 N87cc4e7eb3134968ab47bd55e40001b7 schema:name readcube_id
47 schema:value 28e8b08b991d4bd42da591dfaf90700d7b3000671595eb0374f96336bce1a400
48 rdf:type schema:PropertyValue
49 N9d78557364be4aa2bc135881470e8e31 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 Nab7893353f4548e19aff67406f0ec8b9 schema:issueNumber 2
52 rdf:type schema:PublicationIssue
53 Nd2bcd50166344a75bda9aa0e83d3e91d schema:volumeNumber 42
54 rdf:type schema:PublicationVolume
55 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
56 schema:name Engineering
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
59 schema:name Materials Engineering
60 rdf:type schema:DefinedTerm
61 sg:journal.1136692 schema:issn 1063-7826
62 1090-6479
63 schema:name Semiconductors
64 rdf:type schema:Periodical
65 sg:person.012131633577.53 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
66 schema:familyName Tsatsul’nikov
67 schema:givenName A. F.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012131633577.53
69 rdf:type schema:Person
70 sg:person.013543521751.29 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
71 schema:familyName Lundin
72 schema:givenName W. V.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013543521751.29
74 rdf:type schema:Person
75 sg:person.016272446141.43 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
76 schema:familyName Sakharov
77 schema:givenName A. V.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016272446141.43
79 rdf:type schema:Person
80 sg:person.07464610023.44 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
81 schema:familyName Nikolaev
82 schema:givenName A. E.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07464610023.44
84 rdf:type schema:Person
85 https://doi.org/10.1063/1.2240307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057849539
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1109/jqe.2004.837005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061306416
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1143/jjap.38.l1000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063062685
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1143/jjap.45.l659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063078348
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1143/jjap.46.l129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063080229
94 rdf:type schema:CreativeWork
95 https://www.grid.ac/institutes/grid.423485.c schema:alternateName Ioffe Institute
96 schema:name Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...