Production of quantum dots by selective interdiffusion in CdTe/CdMgTe quantum wells View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-11

AUTHORS

S. V. Zaitsev, M. K. Welsch, A. Forchel, G. Bacher

ABSTRACT

Individual quantum dots are produced by selective interdiffusion between the barriers and the quantum well layer in a CdTe/CdMgTe heterostructure. The heterostructure, with a SiO2 mask preliminarily deposited onto the surface, was subjected to short-term annealing for 1 min at the temperature 410°C. The mask contained open apertures with diameter up to 140 nm. The annealing induces diffusion of Mg atoms into the depth of the quantum well. Diffusion is substantially enhanced under the mask. The induced lateral potential, with minimums in the regions of apertures of the mask, stimulates efficient localization of charge carriers that form quasi-zero-dimensional excitons. The study of radiative recombination suggests complete spatial confinement of the excitons. The confinement manifests itself in the observation of a substantially narrowed line of excitonic transitions, as well as in the observation of biexcitons and excited states at high levels of photoexcitation. The characteristic energies of interlevel splitting and the biexciton binding energy show that charge carriers are under the condition of weak confinement in the quantum dots. More... »

PAGES

1339-1344

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782607110127

DOI

http://dx.doi.org/10.1134/s1063782607110127

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028437022


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Solid State Physics, 142432, Chernogolovka, Moscow Region, Russia", 
          "id": "http://www.grid.ac/institutes/grid.418975.6", 
          "name": [
            "Institute of Solid State Physics, 142432, Chernogolovka, Moscow Region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaitsev", 
        "givenName": "S. V.", 
        "id": "sg:person.011610151633.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011610151633.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technische Physik, Universit\u00e4t W\u00fcrzburg, D-97074, Am Hubland, W\u00fcrzburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.8379.5", 
          "name": [
            "Technische Physik, Universit\u00e4t W\u00fcrzburg, D-97074, Am Hubland, W\u00fcrzburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Welsch", 
        "givenName": "M. K.", 
        "id": "sg:person.013775777151.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013775777151.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technische Physik, Universit\u00e4t W\u00fcrzburg, D-97074, Am Hubland, W\u00fcrzburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.8379.5", 
          "name": [
            "Technische Physik, Universit\u00e4t W\u00fcrzburg, D-97074, Am Hubland, W\u00fcrzburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Forchel", 
        "givenName": "A.", 
        "id": "sg:person.0734455677.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734455677.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lehrstuhl Wekstoffe der Elektrotechnik, Universit\u00e4t Duisburg-Essen, D-47057, Duisburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5718.b", 
          "name": [
            "Lehrstuhl Wekstoffe der Elektrotechnik, Universit\u00e4t Duisburg-Essen, D-47057, Duisburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bacher", 
        "givenName": "G.", 
        "id": "sg:person.0771451125.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771451125.66"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2007-11", 
    "datePublishedReg": "2007-11-01", 
    "description": "Individual quantum dots are produced by selective interdiffusion between the barriers and the quantum well layer in a CdTe/CdMgTe heterostructure. The heterostructure, with a SiO2 mask preliminarily deposited onto the surface, was subjected to short-term annealing for 1 min at the temperature 410\u00b0C. The mask contained open apertures with diameter up to 140 nm. The annealing induces diffusion of Mg atoms into the depth of the quantum well. Diffusion is substantially enhanced under the mask. The induced lateral potential, with minimums in the regions of apertures of the mask, stimulates efficient localization of charge carriers that form quasi-zero-dimensional excitons. The study of radiative recombination suggests complete spatial confinement of the excitons. The confinement manifests itself in the observation of a substantially narrowed line of excitonic transitions, as well as in the observation of biexcitons and excited states at high levels of photoexcitation. The characteristic energies of interlevel splitting and the biexciton binding energy show that charge carriers are under the condition of weak confinement in the quantum dots.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063782607110127", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "41"
      }
    ], 
    "keywords": [
      "quantum dots", 
      "selective interdiffusion", 
      "CdTe/CdMgTe quantum wells", 
      "zero-dimensional excitons", 
      "observation of biexcitons", 
      "individual quantum dots", 
      "CdTe/CdMgTe heterostructures", 
      "charge carriers", 
      "interlevel splitting", 
      "quantum wells", 
      "lateral potential", 
      "excitonic transitions", 
      "short-term annealing", 
      "excited states", 
      "characteristic energy", 
      "weak confinement", 
      "radiative recombination", 
      "spatial confinement", 
      "open aperture", 
      "dots", 
      "Mg atoms", 
      "biexcitons", 
      "confinement", 
      "excitons", 
      "SiO2 mask", 
      "heterostructures", 
      "temperature 410", 
      "aperture", 
      "interdiffusion", 
      "energy", 
      "annealing", 
      "quantum", 
      "mask", 
      "photoexcitation", 
      "atoms", 
      "splitting", 
      "carriers", 
      "wells", 
      "diffusion", 
      "transition", 
      "recombination", 
      "layer", 
      "surface", 
      "state", 
      "minimum", 
      "diameter", 
      "efficient localization", 
      "region", 
      "barriers", 
      "depth", 
      "lines", 
      "potential", 
      "localization", 
      "conditions", 
      "production", 
      "study", 
      "levels", 
      "min", 
      "high levels", 
      "observations", 
      "CdMgTe heterostructure", 
      "regions of apertures", 
      "complete spatial confinement", 
      "CdMgTe quantum wells"
    ], 
    "name": "Production of quantum dots by selective interdiffusion in CdTe/CdMgTe quantum wells", 
    "pagination": "1339-1344", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028437022"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782607110127"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782607110127", 
      "https://app.dimensions.ai/details/publication/pub.1028437022"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_436.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063782607110127"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782607110127'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782607110127'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782607110127'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782607110127'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      90 URIs      82 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782607110127 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N186a0182a55741d2bfc1d0a329f6508b
4 schema:datePublished 2007-11
5 schema:datePublishedReg 2007-11-01
6 schema:description Individual quantum dots are produced by selective interdiffusion between the barriers and the quantum well layer in a CdTe/CdMgTe heterostructure. The heterostructure, with a SiO2 mask preliminarily deposited onto the surface, was subjected to short-term annealing for 1 min at the temperature 410°C. The mask contained open apertures with diameter up to 140 nm. The annealing induces diffusion of Mg atoms into the depth of the quantum well. Diffusion is substantially enhanced under the mask. The induced lateral potential, with minimums in the regions of apertures of the mask, stimulates efficient localization of charge carriers that form quasi-zero-dimensional excitons. The study of radiative recombination suggests complete spatial confinement of the excitons. The confinement manifests itself in the observation of a substantially narrowed line of excitonic transitions, as well as in the observation of biexcitons and excited states at high levels of photoexcitation. The characteristic energies of interlevel splitting and the biexciton binding energy show that charge carriers are under the condition of weak confinement in the quantum dots.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N36c3cfe7972d48909ab8a6758410efb3
11 Na6f0c09d08b64ff19244af2f7b5ba917
12 sg:journal.1136692
13 schema:keywords CdMgTe heterostructure
14 CdMgTe quantum wells
15 CdTe/CdMgTe heterostructures
16 CdTe/CdMgTe quantum wells
17 Mg atoms
18 SiO2 mask
19 annealing
20 aperture
21 atoms
22 barriers
23 biexcitons
24 carriers
25 characteristic energy
26 charge carriers
27 complete spatial confinement
28 conditions
29 confinement
30 depth
31 diameter
32 diffusion
33 dots
34 efficient localization
35 energy
36 excited states
37 excitonic transitions
38 excitons
39 heterostructures
40 high levels
41 individual quantum dots
42 interdiffusion
43 interlevel splitting
44 lateral potential
45 layer
46 levels
47 lines
48 localization
49 mask
50 min
51 minimum
52 observation of biexcitons
53 observations
54 open aperture
55 photoexcitation
56 potential
57 production
58 quantum
59 quantum dots
60 quantum wells
61 radiative recombination
62 recombination
63 region
64 regions of apertures
65 selective interdiffusion
66 short-term annealing
67 spatial confinement
68 splitting
69 state
70 study
71 surface
72 temperature 410
73 transition
74 weak confinement
75 wells
76 zero-dimensional excitons
77 schema:name Production of quantum dots by selective interdiffusion in CdTe/CdMgTe quantum wells
78 schema:pagination 1339-1344
79 schema:productId N5de84c88dcdf4d2fb165e9f867472cc1
80 N8378a10ee0754a948964b703bff5d474
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028437022
82 https://doi.org/10.1134/s1063782607110127
83 schema:sdDatePublished 2021-12-01T19:18
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher N312a2e2705084a019351915b58b01311
86 schema:url https://doi.org/10.1134/s1063782607110127
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N08efd5090ef64aca9bbb5137fb14dc1a rdf:first sg:person.0734455677.90
91 rdf:rest N70175b011a7b48419c80d7470a59d9c8
92 N186a0182a55741d2bfc1d0a329f6508b rdf:first sg:person.011610151633.09
93 rdf:rest N199c9f1342f543d4a45b0e91e62571e4
94 N199c9f1342f543d4a45b0e91e62571e4 rdf:first sg:person.013775777151.52
95 rdf:rest N08efd5090ef64aca9bbb5137fb14dc1a
96 N312a2e2705084a019351915b58b01311 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N36c3cfe7972d48909ab8a6758410efb3 schema:issueNumber 11
99 rdf:type schema:PublicationIssue
100 N5de84c88dcdf4d2fb165e9f867472cc1 schema:name dimensions_id
101 schema:value pub.1028437022
102 rdf:type schema:PropertyValue
103 N70175b011a7b48419c80d7470a59d9c8 rdf:first sg:person.0771451125.66
104 rdf:rest rdf:nil
105 N8378a10ee0754a948964b703bff5d474 schema:name doi
106 schema:value 10.1134/s1063782607110127
107 rdf:type schema:PropertyValue
108 Na6f0c09d08b64ff19244af2f7b5ba917 schema:volumeNumber 41
109 rdf:type schema:PublicationVolume
110 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
111 schema:name Physical Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
114 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
115 rdf:type schema:DefinedTerm
116 sg:journal.1136692 schema:issn 1063-7826
117 1090-6479
118 schema:name Semiconductors
119 schema:publisher Pleiades Publishing
120 rdf:type schema:Periodical
121 sg:person.011610151633.09 schema:affiliation grid-institutes:grid.418975.6
122 schema:familyName Zaitsev
123 schema:givenName S. V.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011610151633.09
125 rdf:type schema:Person
126 sg:person.013775777151.52 schema:affiliation grid-institutes:grid.8379.5
127 schema:familyName Welsch
128 schema:givenName M. K.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013775777151.52
130 rdf:type schema:Person
131 sg:person.0734455677.90 schema:affiliation grid-institutes:grid.8379.5
132 schema:familyName Forchel
133 schema:givenName A.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734455677.90
135 rdf:type schema:Person
136 sg:person.0771451125.66 schema:affiliation grid-institutes:grid.5718.b
137 schema:familyName Bacher
138 schema:givenName G.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771451125.66
140 rdf:type schema:Person
141 grid-institutes:grid.418975.6 schema:alternateName Institute of Solid State Physics, 142432, Chernogolovka, Moscow Region, Russia
142 schema:name Institute of Solid State Physics, 142432, Chernogolovka, Moscow Region, Russia
143 rdf:type schema:Organization
144 grid-institutes:grid.5718.b schema:alternateName Lehrstuhl Wekstoffe der Elektrotechnik, Universität Duisburg-Essen, D-47057, Duisburg, Germany
145 schema:name Lehrstuhl Wekstoffe der Elektrotechnik, Universität Duisburg-Essen, D-47057, Duisburg, Germany
146 rdf:type schema:Organization
147 grid-institutes:grid.8379.5 schema:alternateName Technische Physik, Universität Würzburg, D-97074, Am Hubland, Würzburg, Germany
148 schema:name Technische Physik, Universität Würzburg, D-97074, Am Hubland, Würzburg, Germany
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...