Nonequilibrium population of charge carriers in structures with InGaN deep quantum dots View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-05

AUTHORS

D. S. Sizov, E. E. Zavarin, N. N. Ledentsov, V. V. Lundin, Yu. G. Musikhin, V. S. Sizov, R. A. Suris, A. F. Tsatsul’nikov

ABSTRACT

Electronic and optical properties of ensembles of quantum dots with various energies of activation from the ground-state level to the continuous-spectrum region were studied theoretically and experimentally with the InGaN quantum dots as an example. It is shown that, depending on the activation energy, both the quasi-equilibrium statistic of charge carriers at the levels of quantum dots and nonequilibrium statistic at room temperature are possible. In the latter case, the position of the maximum in the emission spectrum is governed by the value of the demarcation transition: the quantum dots with the transition energy higher than this value feature the quasi-equilibrium population of charge carriers, while the quantum dots with the transition energy lower than the demarcation-transition energy feature the nonequilibrium population. A model based on kinetic equations was used in the theoretical analysis. The key parameters determining the statistic are the parameters of thermal ejection of charge carriers; these parameters depend exponentially on the activation energy. It is shown experimentally that the use of stimulated phase decomposition makes it possible to appreciably increase the activation energy. In this case, the thermal-activation time is found to be much longer than the recombination time for an electron-hole pair, which suppresses the redistribution of charge carriers between the quantum dots and gives rise to the nonequilibrium population. The effect of nonequilibrium population on the luminescent properties of the structures with quantum dots is studied in detail. More... »

PAGES

575-589

References to SciGraph publications

Journal

TITLE

Semiconductors

ISSUE

5

VOLUME

41

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782607050193

DOI

http://dx.doi.org/10.1134/s1063782607050193

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022023519


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sizov", 
        "givenName": "D. S.", 
        "id": "sg:person.011740302075.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011740302075.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zavarin", 
        "givenName": "E. E.", 
        "id": "sg:person.014031571265.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014031571265.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ledentsov", 
        "givenName": "N. N.", 
        "id": "sg:person.014140400702.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014140400702.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lundin", 
        "givenName": "V. V.", 
        "id": "sg:person.013427374503.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013427374503.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Musikhin", 
        "givenName": "Yu. G.", 
        "id": "sg:person.014603755431.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014603755431.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sizov", 
        "givenName": "V. S.", 
        "id": "sg:person.014637527201.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014637527201.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suris", 
        "givenName": "R. A.", 
        "id": "sg:person.07601320523.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07601320523.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsatsul\u2019nikov", 
        "givenName": "A. F.", 
        "id": "sg:person.012131633577.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012131633577.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature01086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016707465", 
          "https://doi.org/10.1038/nature01086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016707465", 
          "https://doi.org/10.1038/nature01086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0268-1242/11/4/017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052287941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.121249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057685420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1391227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057702202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1462868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057709151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1567055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057721029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1689400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057763167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.16671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060597340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.16671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060597340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.155310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060604670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.66.155310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060604670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2944.605647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061145411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.34.l797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063055209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.38.3976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063061844"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-05", 
    "datePublishedReg": "2007-05-01", 
    "description": "Electronic and optical properties of ensembles of quantum dots with various energies of activation from the ground-state level to the continuous-spectrum region were studied theoretically and experimentally with the InGaN quantum dots as an example. It is shown that, depending on the activation energy, both the quasi-equilibrium statistic of charge carriers at the levels of quantum dots and nonequilibrium statistic at room temperature are possible. In the latter case, the position of the maximum in the emission spectrum is governed by the value of the demarcation transition: the quantum dots with the transition energy higher than this value feature the quasi-equilibrium population of charge carriers, while the quantum dots with the transition energy lower than the demarcation-transition energy feature the nonequilibrium population. A model based on kinetic equations was used in the theoretical analysis. The key parameters determining the statistic are the parameters of thermal ejection of charge carriers; these parameters depend exponentially on the activation energy. It is shown experimentally that the use of stimulated phase decomposition makes it possible to appreciably increase the activation energy. In this case, the thermal-activation time is found to be much longer than the recombination time for an electron-hole pair, which suppresses the redistribution of charge carriers between the quantum dots and gives rise to the nonequilibrium population. The effect of nonequilibrium population on the luminescent properties of the structures with quantum dots is studied in detail.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063782607050193", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "41"
      }
    ], 
    "name": "Nonequilibrium population of charge carriers in structures with InGaN deep quantum dots", 
    "pagination": "575-589", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "68ed10d7ec9c354c0529254fc54eee5896ff2cefd1b7d9951a5ac27def722518"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782607050193"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022023519"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782607050193", 
      "https://app.dimensions.ai/details/publication/pub.1022023519"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS1063782607050193"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782607050193'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782607050193'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782607050193'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782607050193'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782607050193 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author Nb60bd59878d8465aa10fec050c6506a8
4 schema:citation sg:pub.10.1038/nature01086
5 https://doi.org/10.1063/1.121249
6 https://doi.org/10.1063/1.1391227
7 https://doi.org/10.1063/1.1462868
8 https://doi.org/10.1063/1.1567055
9 https://doi.org/10.1063/1.1689400
10 https://doi.org/10.1088/0268-1242/11/4/017
11 https://doi.org/10.1103/physrevb.62.16671
12 https://doi.org/10.1103/physrevb.66.155310
13 https://doi.org/10.1109/2944.605647
14 https://doi.org/10.1143/jjap.34.l797
15 https://doi.org/10.1143/jjap.38.3976
16 schema:datePublished 2007-05
17 schema:datePublishedReg 2007-05-01
18 schema:description Electronic and optical properties of ensembles of quantum dots with various energies of activation from the ground-state level to the continuous-spectrum region were studied theoretically and experimentally with the InGaN quantum dots as an example. It is shown that, depending on the activation energy, both the quasi-equilibrium statistic of charge carriers at the levels of quantum dots and nonequilibrium statistic at room temperature are possible. In the latter case, the position of the maximum in the emission spectrum is governed by the value of the demarcation transition: the quantum dots with the transition energy higher than this value feature the quasi-equilibrium population of charge carriers, while the quantum dots with the transition energy lower than the demarcation-transition energy feature the nonequilibrium population. A model based on kinetic equations was used in the theoretical analysis. The key parameters determining the statistic are the parameters of thermal ejection of charge carriers; these parameters depend exponentially on the activation energy. It is shown experimentally that the use of stimulated phase decomposition makes it possible to appreciably increase the activation energy. In this case, the thermal-activation time is found to be much longer than the recombination time for an electron-hole pair, which suppresses the redistribution of charge carriers between the quantum dots and gives rise to the nonequilibrium population. The effect of nonequilibrium population on the luminescent properties of the structures with quantum dots is studied in detail.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N288a7e136c394243a2b7d4444e880eb3
23 N3d4cb6ae28f0451282eef011076e14ab
24 sg:journal.1136692
25 schema:name Nonequilibrium population of charge carriers in structures with InGaN deep quantum dots
26 schema:pagination 575-589
27 schema:productId N5bad8e41257148519c2c9697acdfc467
28 N905256d31e774e42b128d9d039507a54
29 Nbcfd396bd27043199521b6fee1c6837f
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022023519
31 https://doi.org/10.1134/s1063782607050193
32 schema:sdDatePublished 2019-04-10T19:55
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Na16e8ad031664bdb9384c7c4c2f6df45
35 schema:url http://link.springer.com/10.1134%2FS1063782607050193
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N1360c8f7d9e545769b1db991510847b9 rdf:first sg:person.013427374503.16
40 rdf:rest Ncfc2dc1c92ea401e9cbe093a8b15bc26
41 N288a7e136c394243a2b7d4444e880eb3 schema:volumeNumber 41
42 rdf:type schema:PublicationVolume
43 N2d404d6c07174ea28779c73c4fd202f4 rdf:first sg:person.012131633577.53
44 rdf:rest rdf:nil
45 N3d4cb6ae28f0451282eef011076e14ab schema:issueNumber 5
46 rdf:type schema:PublicationIssue
47 N52913e895f8f41e2958e49fb78a35f9d rdf:first sg:person.07601320523.02
48 rdf:rest N2d404d6c07174ea28779c73c4fd202f4
49 N5bad8e41257148519c2c9697acdfc467 schema:name dimensions_id
50 schema:value pub.1022023519
51 rdf:type schema:PropertyValue
52 N69b2e8d2ca444dc6ad0b4751d592267e rdf:first sg:person.014637527201.21
53 rdf:rest N52913e895f8f41e2958e49fb78a35f9d
54 N905256d31e774e42b128d9d039507a54 schema:name readcube_id
55 schema:value 68ed10d7ec9c354c0529254fc54eee5896ff2cefd1b7d9951a5ac27def722518
56 rdf:type schema:PropertyValue
57 Na16e8ad031664bdb9384c7c4c2f6df45 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 Nb60bd59878d8465aa10fec050c6506a8 rdf:first sg:person.011740302075.99
60 rdf:rest Nebba45e53bba4f6397469a0751c32d89
61 Nbcfd396bd27043199521b6fee1c6837f schema:name doi
62 schema:value 10.1134/s1063782607050193
63 rdf:type schema:PropertyValue
64 Ncfc2dc1c92ea401e9cbe093a8b15bc26 rdf:first sg:person.014603755431.88
65 rdf:rest N69b2e8d2ca444dc6ad0b4751d592267e
66 Nea141ce6caec48fb937d60c3871dbe01 rdf:first sg:person.014140400702.37
67 rdf:rest N1360c8f7d9e545769b1db991510847b9
68 Nebba45e53bba4f6397469a0751c32d89 rdf:first sg:person.014031571265.08
69 rdf:rest Nea141ce6caec48fb937d60c3871dbe01
70 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
71 schema:name Physical Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
74 schema:name Quantum Physics
75 rdf:type schema:DefinedTerm
76 sg:journal.1136692 schema:issn 1063-7826
77 1090-6479
78 schema:name Semiconductors
79 rdf:type schema:Periodical
80 sg:person.011740302075.99 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
81 schema:familyName Sizov
82 schema:givenName D. S.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011740302075.99
84 rdf:type schema:Person
85 sg:person.012131633577.53 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
86 schema:familyName Tsatsul’nikov
87 schema:givenName A. F.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012131633577.53
89 rdf:type schema:Person
90 sg:person.013427374503.16 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
91 schema:familyName Lundin
92 schema:givenName V. V.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013427374503.16
94 rdf:type schema:Person
95 sg:person.014031571265.08 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
96 schema:familyName Zavarin
97 schema:givenName E. E.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014031571265.08
99 rdf:type schema:Person
100 sg:person.014140400702.37 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
101 schema:familyName Ledentsov
102 schema:givenName N. N.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014140400702.37
104 rdf:type schema:Person
105 sg:person.014603755431.88 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
106 schema:familyName Musikhin
107 schema:givenName Yu. G.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014603755431.88
109 rdf:type schema:Person
110 sg:person.014637527201.21 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
111 schema:familyName Sizov
112 schema:givenName V. S.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014637527201.21
114 rdf:type schema:Person
115 sg:person.07601320523.02 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
116 schema:familyName Suris
117 schema:givenName R. A.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07601320523.02
119 rdf:type schema:Person
120 sg:pub.10.1038/nature01086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016707465
121 https://doi.org/10.1038/nature01086
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1063/1.121249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057685420
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1063/1.1391227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057702202
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1063/1.1462868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057709151
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1063/1.1567055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057721029
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1063/1.1689400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057763167
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1088/0268-1242/11/4/017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052287941
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevb.62.16671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060597340
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevb.66.155310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060604670
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/2944.605647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061145411
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1143/jjap.34.l797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063055209
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1143/jjap.38.3976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063061844
144 rdf:type schema:CreativeWork
145 https://www.grid.ac/institutes/grid.423485.c schema:alternateName Ioffe Institute
146 schema:name Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...