Quasi-static capacitance of a weakly compensated semiconductor with hopping conduction (on the example of p-Si:B) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-01

AUTHORS

N. A. Poklonski, S. A. Vyrko, A. G. Zabrodskii

ABSTRACT

A moderately doped semiconductor is considered on the insulator side of the insulator-metal phase transition, where the acceptors in (−1), (0), and (+1) charge states form A0 and A+ bands. The expressions are derived for the Debye-Hückel and Schottky-Mott screening lengths of an external electrostatic field for the case of hopping transport of holes via acceptors. The quasistatic capacitance of a semiconductor is calculated in the temperature region where hopping hole conductances in the A0 and A+ bands are approximately equal. It is shown that the Debye-Hückel screening length can be determined using the measurements of quasistatic capacitance even in the high-field regime, i.e., in the Schottky-Mott approximation. The frequency of an electric signal in the measurements of quasistatic semiconductor capacitance in a metal-insulator-semiconductor structure must be much lower than the average frequency of hole hopping via acceptors (boron atoms in silicon). More... »

PAGES

30-36

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063782607010083

DOI

http://dx.doi.org/10.1134/s1063782607010083

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022977852


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Belarusian State University, 220030, Minsk, Belarus", 
          "id": "http://www.grid.ac/institutes/grid.17678.3f", 
          "name": [
            "Belarusian State University, 220030, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poklonski", 
        "givenName": "N. A.", 
        "id": "sg:person.015505352225.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505352225.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Belarusian State University, 220030, Minsk, Belarus", 
          "id": "http://www.grid.ac/institutes/grid.17678.3f", 
          "name": [
            "Belarusian State University, 220030, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vyrko", 
        "givenName": "S. A.", 
        "id": "sg:person.0742524034.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742524034.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zabrodskii", 
        "givenName": "A. G.", 
        "id": "sg:person.016623532707.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016623532707.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-662-12869-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024218792", 
          "https://doi.org/10.1007/978-3-662-12869-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01774216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022662177", 
          "https://doi.org/10.1007/bf01774216"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-01", 
    "datePublishedReg": "2007-01-01", 
    "description": "A moderately doped semiconductor is considered on the insulator side of the insulator-metal phase transition, where the acceptors in (\u22121), (0), and (+1) charge states form A0 and A+ bands. The expressions are derived for the Debye-H\u00fcckel and Schottky-Mott screening lengths of an external electrostatic field for the case of hopping transport of holes via acceptors. The quasistatic capacitance of a semiconductor is calculated in the temperature region where hopping hole conductances in the A0 and A+ bands are approximately equal. It is shown that the Debye-H\u00fcckel screening length can be determined using the measurements of quasistatic capacitance even in the high-field regime, i.e., in the Schottky-Mott approximation. The frequency of an electric signal in the measurements of quasistatic semiconductor capacitance in a metal-insulator-semiconductor structure must be much lower than the average frequency of hole hopping via acceptors (boron atoms in silicon).", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s1063782607010083", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "41"
      }
    ], 
    "keywords": [
      "quasistatic capacitance", 
      "insulator-metal phase transition", 
      "high-field regime", 
      "transport of holes", 
      "external electrostatic field", 
      "semiconductor capacitance", 
      "Debye-H\u00fcckel screening length", 
      "quasi-static capacitance", 
      "semiconductor structures", 
      "charge state", 
      "insulator side", 
      "hole conductance", 
      "electric signals", 
      "electrostatic field", 
      "screening length", 
      "capacitance", 
      "semiconductors", 
      "phase transition", 
      "temperature region", 
      "holes", 
      "Debye-H\u00fcckel", 
      "A0", 
      "band", 
      "measurements", 
      "conduction", 
      "acceptor", 
      "transition", 
      "frequency", 
      "regime", 
      "approximation", 
      "field", 
      "signals", 
      "transport", 
      "length", 
      "state", 
      "structure", 
      "conductance", 
      "side", 
      "average frequency", 
      "region", 
      "cases", 
      "expression"
    ], 
    "name": "Quasi-static capacitance of a weakly compensated semiconductor with hopping conduction (on the example of p-Si:B)", 
    "pagination": "30-36", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022977852"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063782607010083"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063782607010083", 
      "https://app.dimensions.ai/details/publication/pub.1022977852"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T09:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s1063782607010083"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782607010083'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782607010083'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782607010083'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782607010083'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      22 PREDICATES      71 URIs      60 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063782607010083 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 anzsrc-for:0206
4 schema:author N474b96cbcab9439fbdc9049c0dc41c81
5 schema:citation sg:pub.10.1007/978-3-662-12869-5
6 sg:pub.10.1007/bf01774216
7 schema:datePublished 2007-01
8 schema:datePublishedReg 2007-01-01
9 schema:description A moderately doped semiconductor is considered on the insulator side of the insulator-metal phase transition, where the acceptors in (−1), (0), and (+1) charge states form A0 and A+ bands. The expressions are derived for the Debye-Hückel and Schottky-Mott screening lengths of an external electrostatic field for the case of hopping transport of holes via acceptors. The quasistatic capacitance of a semiconductor is calculated in the temperature region where hopping hole conductances in the A0 and A+ bands are approximately equal. It is shown that the Debye-Hückel screening length can be determined using the measurements of quasistatic capacitance even in the high-field regime, i.e., in the Schottky-Mott approximation. The frequency of an electric signal in the measurements of quasistatic semiconductor capacitance in a metal-insulator-semiconductor structure must be much lower than the average frequency of hole hopping via acceptors (boron atoms in silicon).
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N9e36fa1528534e8ba13c03cc41186ab7
14 Ne2d221a095234bf48e354add9c716913
15 sg:journal.1136692
16 schema:keywords A0
17 Debye-Hückel
18 Debye-Hückel screening length
19 acceptor
20 approximation
21 average frequency
22 band
23 capacitance
24 cases
25 charge state
26 conductance
27 conduction
28 electric signals
29 electrostatic field
30 expression
31 external electrostatic field
32 field
33 frequency
34 high-field regime
35 hole conductance
36 holes
37 insulator side
38 insulator-metal phase transition
39 length
40 measurements
41 phase transition
42 quasi-static capacitance
43 quasistatic capacitance
44 regime
45 region
46 screening length
47 semiconductor capacitance
48 semiconductor structures
49 semiconductors
50 side
51 signals
52 state
53 structure
54 temperature region
55 transition
56 transport
57 transport of holes
58 schema:name Quasi-static capacitance of a weakly compensated semiconductor with hopping conduction (on the example of p-Si:B)
59 schema:pagination 30-36
60 schema:productId N2b06de157f8d4d2c95865bf205fc508e
61 N65ef5a889c884425b66585e77f752d3d
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022977852
63 https://doi.org/10.1134/s1063782607010083
64 schema:sdDatePublished 2022-05-10T09:58
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher Nd03d16105ce249c29f73374840bee306
67 schema:url https://doi.org/10.1134/s1063782607010083
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N2b06de157f8d4d2c95865bf205fc508e schema:name doi
72 schema:value 10.1134/s1063782607010083
73 rdf:type schema:PropertyValue
74 N474b96cbcab9439fbdc9049c0dc41c81 rdf:first sg:person.015505352225.90
75 rdf:rest Nb3c637cf67d5413fa5861018146b3b65
76 N65ef5a889c884425b66585e77f752d3d schema:name dimensions_id
77 schema:value pub.1022977852
78 rdf:type schema:PropertyValue
79 N7fd84fb072264aa59c6f29941b06782c rdf:first sg:person.016623532707.36
80 rdf:rest rdf:nil
81 N9e36fa1528534e8ba13c03cc41186ab7 schema:issueNumber 1
82 rdf:type schema:PublicationIssue
83 Nb3c637cf67d5413fa5861018146b3b65 rdf:first sg:person.0742524034.73
84 rdf:rest N7fd84fb072264aa59c6f29941b06782c
85 Nd03d16105ce249c29f73374840bee306 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Ne2d221a095234bf48e354add9c716913 schema:volumeNumber 41
88 rdf:type schema:PublicationVolume
89 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
90 schema:name Physical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
93 schema:name Condensed Matter Physics
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
96 schema:name Quantum Physics
97 rdf:type schema:DefinedTerm
98 sg:journal.1136692 schema:issn 1063-7826
99 1090-6479
100 schema:name Semiconductors
101 schema:publisher Pleiades Publishing
102 rdf:type schema:Periodical
103 sg:person.015505352225.90 schema:affiliation grid-institutes:grid.17678.3f
104 schema:familyName Poklonski
105 schema:givenName N. A.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505352225.90
107 rdf:type schema:Person
108 sg:person.016623532707.36 schema:affiliation grid-institutes:grid.423485.c
109 schema:familyName Zabrodskii
110 schema:givenName A. G.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016623532707.36
112 rdf:type schema:Person
113 sg:person.0742524034.73 schema:affiliation grid-institutes:grid.17678.3f
114 schema:familyName Vyrko
115 schema:givenName S. A.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742524034.73
117 rdf:type schema:Person
118 sg:pub.10.1007/978-3-662-12869-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024218792
119 https://doi.org/10.1007/978-3-662-12869-5
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/bf01774216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022662177
122 https://doi.org/10.1007/bf01774216
123 rdf:type schema:CreativeWork
124 grid-institutes:grid.17678.3f schema:alternateName Belarusian State University, 220030, Minsk, Belarus
125 schema:name Belarusian State University, 220030, Minsk, Belarus
126 rdf:type schema:Organization
127 grid-institutes:grid.423485.c schema:alternateName Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
128 schema:name Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...