Ontology type: schema:ScholarlyArticle
2007-01
AUTHORSN. A. Poklonski, S. A. Vyrko, A. G. Zabrodskii
ABSTRACTA moderately doped semiconductor is considered on the insulator side of the insulator-metal phase transition, where the acceptors in (−1), (0), and (+1) charge states form A0 and A+ bands. The expressions are derived for the Debye-Hückel and Schottky-Mott screening lengths of an external electrostatic field for the case of hopping transport of holes via acceptors. The quasistatic capacitance of a semiconductor is calculated in the temperature region where hopping hole conductances in the A0 and A+ bands are approximately equal. It is shown that the Debye-Hückel screening length can be determined using the measurements of quasistatic capacitance even in the high-field regime, i.e., in the Schottky-Mott approximation. The frequency of an electric signal in the measurements of quasistatic semiconductor capacitance in a metal-insulator-semiconductor structure must be much lower than the average frequency of hole hopping via acceptors (boron atoms in silicon). More... »
PAGES30-36
http://scigraph.springernature.com/pub.10.1134/s1063782607010083
DOIhttp://dx.doi.org/10.1134/s1063782607010083
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1022977852
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Condensed Matter Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Quantum Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Belarusian State University, 220030, Minsk, Belarus",
"id": "http://www.grid.ac/institutes/grid.17678.3f",
"name": [
"Belarusian State University, 220030, Minsk, Belarus"
],
"type": "Organization"
},
"familyName": "Poklonski",
"givenName": "N. A.",
"id": "sg:person.015505352225.90",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505352225.90"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Belarusian State University, 220030, Minsk, Belarus",
"id": "http://www.grid.ac/institutes/grid.17678.3f",
"name": [
"Belarusian State University, 220030, Minsk, Belarus"
],
"type": "Organization"
},
"familyName": "Vyrko",
"givenName": "S. A.",
"id": "sg:person.0742524034.73",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742524034.73"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Zabrodskii",
"givenName": "A. G.",
"id": "sg:person.016623532707.36",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016623532707.36"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-3-662-12869-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024218792",
"https://doi.org/10.1007/978-3-662-12869-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01774216",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022662177",
"https://doi.org/10.1007/bf01774216"
],
"type": "CreativeWork"
}
],
"datePublished": "2007-01",
"datePublishedReg": "2007-01-01",
"description": "A moderately doped semiconductor is considered on the insulator side of the insulator-metal phase transition, where the acceptors in (\u22121), (0), and (+1) charge states form A0 and A+ bands. The expressions are derived for the Debye-H\u00fcckel and Schottky-Mott screening lengths of an external electrostatic field for the case of hopping transport of holes via acceptors. The quasistatic capacitance of a semiconductor is calculated in the temperature region where hopping hole conductances in the A0 and A+ bands are approximately equal. It is shown that the Debye-H\u00fcckel screening length can be determined using the measurements of quasistatic capacitance even in the high-field regime, i.e., in the Schottky-Mott approximation. The frequency of an electric signal in the measurements of quasistatic semiconductor capacitance in a metal-insulator-semiconductor structure must be much lower than the average frequency of hole hopping via acceptors (boron atoms in silicon).",
"genre": "article",
"id": "sg:pub.10.1134/s1063782607010083",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136692",
"issn": [
"1063-7826",
"1090-6479"
],
"name": "Semiconductors",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "41"
}
],
"keywords": [
"quasistatic capacitance",
"insulator-metal phase transition",
"high-field regime",
"transport of holes",
"external electrostatic field",
"semiconductor capacitance",
"Debye-H\u00fcckel screening length",
"quasi-static capacitance",
"semiconductor structures",
"charge state",
"insulator side",
"hole conductance",
"electric signals",
"electrostatic field",
"screening length",
"capacitance",
"semiconductors",
"phase transition",
"temperature region",
"holes",
"Debye-H\u00fcckel",
"A0",
"band",
"measurements",
"conduction",
"acceptor",
"transition",
"frequency",
"regime",
"approximation",
"field",
"signals",
"transport",
"length",
"state",
"structure",
"conductance",
"side",
"average frequency",
"region",
"cases",
"expression"
],
"name": "Quasi-static capacitance of a weakly compensated semiconductor with hopping conduction (on the example of p-Si:B)",
"pagination": "30-36",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1022977852"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s1063782607010083"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s1063782607010083",
"https://app.dimensions.ai/details/publication/pub.1022977852"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:58",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_435.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s1063782607010083"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782607010083'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782607010083'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782607010083'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782607010083'
This table displays all metadata directly associated to this object as RDF triples.
129 TRIPLES
22 PREDICATES
71 URIs
60 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s1063782607010083 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0204 |
3 | ″ | ″ | anzsrc-for:0206 |
4 | ″ | schema:author | N474b96cbcab9439fbdc9049c0dc41c81 |
5 | ″ | schema:citation | sg:pub.10.1007/978-3-662-12869-5 |
6 | ″ | ″ | sg:pub.10.1007/bf01774216 |
7 | ″ | schema:datePublished | 2007-01 |
8 | ″ | schema:datePublishedReg | 2007-01-01 |
9 | ″ | schema:description | A moderately doped semiconductor is considered on the insulator side of the insulator-metal phase transition, where the acceptors in (−1), (0), and (+1) charge states form A0 and A+ bands. The expressions are derived for the Debye-Hückel and Schottky-Mott screening lengths of an external electrostatic field for the case of hopping transport of holes via acceptors. The quasistatic capacitance of a semiconductor is calculated in the temperature region where hopping hole conductances in the A0 and A+ bands are approximately equal. It is shown that the Debye-Hückel screening length can be determined using the measurements of quasistatic capacitance even in the high-field regime, i.e., in the Schottky-Mott approximation. The frequency of an electric signal in the measurements of quasistatic semiconductor capacitance in a metal-insulator-semiconductor structure must be much lower than the average frequency of hole hopping via acceptors (boron atoms in silicon). |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N9e36fa1528534e8ba13c03cc41186ab7 |
14 | ″ | ″ | Ne2d221a095234bf48e354add9c716913 |
15 | ″ | ″ | sg:journal.1136692 |
16 | ″ | schema:keywords | A0 |
17 | ″ | ″ | Debye-Hückel |
18 | ″ | ″ | Debye-Hückel screening length |
19 | ″ | ″ | acceptor |
20 | ″ | ″ | approximation |
21 | ″ | ″ | average frequency |
22 | ″ | ″ | band |
23 | ″ | ″ | capacitance |
24 | ″ | ″ | cases |
25 | ″ | ″ | charge state |
26 | ″ | ″ | conductance |
27 | ″ | ″ | conduction |
28 | ″ | ″ | electric signals |
29 | ″ | ″ | electrostatic field |
30 | ″ | ″ | expression |
31 | ″ | ″ | external electrostatic field |
32 | ″ | ″ | field |
33 | ″ | ″ | frequency |
34 | ″ | ″ | high-field regime |
35 | ″ | ″ | hole conductance |
36 | ″ | ″ | holes |
37 | ″ | ″ | insulator side |
38 | ″ | ″ | insulator-metal phase transition |
39 | ″ | ″ | length |
40 | ″ | ″ | measurements |
41 | ″ | ″ | phase transition |
42 | ″ | ″ | quasi-static capacitance |
43 | ″ | ″ | quasistatic capacitance |
44 | ″ | ″ | regime |
45 | ″ | ″ | region |
46 | ″ | ″ | screening length |
47 | ″ | ″ | semiconductor capacitance |
48 | ″ | ″ | semiconductor structures |
49 | ″ | ″ | semiconductors |
50 | ″ | ″ | side |
51 | ″ | ″ | signals |
52 | ″ | ″ | state |
53 | ″ | ″ | structure |
54 | ″ | ″ | temperature region |
55 | ″ | ″ | transition |
56 | ″ | ″ | transport |
57 | ″ | ″ | transport of holes |
58 | ″ | schema:name | Quasi-static capacitance of a weakly compensated semiconductor with hopping conduction (on the example of p-Si:B) |
59 | ″ | schema:pagination | 30-36 |
60 | ″ | schema:productId | N2b06de157f8d4d2c95865bf205fc508e |
61 | ″ | ″ | N65ef5a889c884425b66585e77f752d3d |
62 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1022977852 |
63 | ″ | ″ | https://doi.org/10.1134/s1063782607010083 |
64 | ″ | schema:sdDatePublished | 2022-05-10T09:58 |
65 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
66 | ″ | schema:sdPublisher | Nd03d16105ce249c29f73374840bee306 |
67 | ″ | schema:url | https://doi.org/10.1134/s1063782607010083 |
68 | ″ | sgo:license | sg:explorer/license/ |
69 | ″ | sgo:sdDataset | articles |
70 | ″ | rdf:type | schema:ScholarlyArticle |
71 | N2b06de157f8d4d2c95865bf205fc508e | schema:name | doi |
72 | ″ | schema:value | 10.1134/s1063782607010083 |
73 | ″ | rdf:type | schema:PropertyValue |
74 | N474b96cbcab9439fbdc9049c0dc41c81 | rdf:first | sg:person.015505352225.90 |
75 | ″ | rdf:rest | Nb3c637cf67d5413fa5861018146b3b65 |
76 | N65ef5a889c884425b66585e77f752d3d | schema:name | dimensions_id |
77 | ″ | schema:value | pub.1022977852 |
78 | ″ | rdf:type | schema:PropertyValue |
79 | N7fd84fb072264aa59c6f29941b06782c | rdf:first | sg:person.016623532707.36 |
80 | ″ | rdf:rest | rdf:nil |
81 | N9e36fa1528534e8ba13c03cc41186ab7 | schema:issueNumber | 1 |
82 | ″ | rdf:type | schema:PublicationIssue |
83 | Nb3c637cf67d5413fa5861018146b3b65 | rdf:first | sg:person.0742524034.73 |
84 | ″ | rdf:rest | N7fd84fb072264aa59c6f29941b06782c |
85 | Nd03d16105ce249c29f73374840bee306 | schema:name | Springer Nature - SN SciGraph project |
86 | ″ | rdf:type | schema:Organization |
87 | Ne2d221a095234bf48e354add9c716913 | schema:volumeNumber | 41 |
88 | ″ | rdf:type | schema:PublicationVolume |
89 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
90 | ″ | schema:name | Physical Sciences |
91 | ″ | rdf:type | schema:DefinedTerm |
92 | anzsrc-for:0204 | schema:inDefinedTermSet | anzsrc-for: |
93 | ″ | schema:name | Condensed Matter Physics |
94 | ″ | rdf:type | schema:DefinedTerm |
95 | anzsrc-for:0206 | schema:inDefinedTermSet | anzsrc-for: |
96 | ″ | schema:name | Quantum Physics |
97 | ″ | rdf:type | schema:DefinedTerm |
98 | sg:journal.1136692 | schema:issn | 1063-7826 |
99 | ″ | ″ | 1090-6479 |
100 | ″ | schema:name | Semiconductors |
101 | ″ | schema:publisher | Pleiades Publishing |
102 | ″ | rdf:type | schema:Periodical |
103 | sg:person.015505352225.90 | schema:affiliation | grid-institutes:grid.17678.3f |
104 | ″ | schema:familyName | Poklonski |
105 | ″ | schema:givenName | N. A. |
106 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505352225.90 |
107 | ″ | rdf:type | schema:Person |
108 | sg:person.016623532707.36 | schema:affiliation | grid-institutes:grid.423485.c |
109 | ″ | schema:familyName | Zabrodskii |
110 | ″ | schema:givenName | A. G. |
111 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016623532707.36 |
112 | ″ | rdf:type | schema:Person |
113 | sg:person.0742524034.73 | schema:affiliation | grid-institutes:grid.17678.3f |
114 | ″ | schema:familyName | Vyrko |
115 | ″ | schema:givenName | S. A. |
116 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742524034.73 |
117 | ″ | rdf:type | schema:Person |
118 | sg:pub.10.1007/978-3-662-12869-5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1024218792 |
119 | ″ | ″ | https://doi.org/10.1007/978-3-662-12869-5 |
120 | ″ | rdf:type | schema:CreativeWork |
121 | sg:pub.10.1007/bf01774216 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1022662177 |
122 | ″ | ″ | https://doi.org/10.1007/bf01774216 |
123 | ″ | rdf:type | schema:CreativeWork |
124 | grid-institutes:grid.17678.3f | schema:alternateName | Belarusian State University, 220030, Minsk, Belarus |
125 | ″ | schema:name | Belarusian State University, 220030, Minsk, Belarus |
126 | ″ | rdf:type | schema:Organization |
127 | grid-institutes:grid.423485.c | schema:alternateName | Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia |
128 | ″ | schema:name | Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia |
129 | ″ | rdf:type | schema:Organization |