Ontology type: schema:ScholarlyArticle
2006-02
AUTHORSN. V. Sibirev, V. G. Talalaev, A. A. Tonkikh, G. E. Cirlin, V. G. Dubrovskiĭ, N. D. Zakharov, P. Werner
ABSTRACTThe energy band diagram of the multilayered Ge0.8Si0.2/Ge0.1Si0.9 heterostructures with vertically correlated quantum dots is analyzed theoretically. With regard to fluctuations of the thickness layer in the columns of quantum dots and to the exciton-phonon coupling, it is shown that the electron states constitute a miniband. The hole wave functions remain localized in the quantum dots. The spectrum of optical transitions calculated for a 20-layered structure at room temperature is in good agreement with the experimental photoluminescence spectrum that involves an intense band at about 1.6 μm. From theoretical considerations and experimental measurements, specific evidence for the miniband in the superlattice is deduced; it is found that the overlap integrals of the wave functions of electrons and holes and the integrated intensity of the photoluminescence band of the Ge quantum dots are described by quadratic functions of the number of the structure periods. More... »
PAGES224-228
http://scigraph.springernature.com/pub.10.1134/s1063782606020205
DOIhttp://dx.doi.org/10.1134/s1063782606020205
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1015955654
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute for Analytical Instrumentation, Russian Academy of Sciences, 190103, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.434964.8",
"name": [
"Institute for Analytical Instrumentation, Russian Academy of Sciences, 190103, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Sibirev",
"givenName": "N. V.",
"id": "sg:person.014160371011.24",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014160371011.24"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Max-Planck-Institut f\u00fcr Mikrostrukturphysik, 06120, Halle (Saale), Germany",
"id": "http://www.grid.ac/institutes/grid.450270.4",
"name": [
"Fock Institute of Physics (Petrodvorets Branch), St. Petersburg State University, 198504, Petrodvorets, Russia",
"Max-Planck-Institut f\u00fcr Mikrostrukturphysik, 06120, Halle (Saale), Germany"
],
"type": "Organization"
},
"familyName": "Talalaev",
"givenName": "V. G.",
"id": "sg:person.0615207126.40",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615207126.40"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Institute for Analytical Instrumentation, Russian Academy of Sciences, 190103, St. Petersburg, Russia",
"Max-Planck-Institut f\u00fcr Mikrostrukturphysik, 06120, Halle (Saale), Germany",
"Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Tonkikh",
"givenName": "A. A.",
"id": "sg:person.012377461417.99",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012377461417.99"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Institute for Analytical Instrumentation, Russian Academy of Sciences, 190103, St. Petersburg, Russia",
"Max-Planck-Institut f\u00fcr Mikrostrukturphysik, 06120, Halle (Saale), Germany",
"Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Cirlin",
"givenName": "G. E.",
"id": "sg:person.014222264064.92",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014222264064.92"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Dubrovski\u012d",
"givenName": "V. G.",
"id": "sg:person.0652004760.89",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652004760.89"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Max-Planck-Institut f\u00fcr Mikrostrukturphysik, 06120, Halle (Saale), Germany",
"id": "http://www.grid.ac/institutes/grid.450270.4",
"name": [
"Max-Planck-Institut f\u00fcr Mikrostrukturphysik, 06120, Halle (Saale), Germany"
],
"type": "Organization"
},
"familyName": "Zakharov",
"givenName": "N. D.",
"id": "sg:person.010544170161.07",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010544170161.07"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Max-Planck-Institut f\u00fcr Mikrostrukturphysik, 06120, Halle (Saale), Germany",
"id": "http://www.grid.ac/institutes/grid.450270.4",
"name": [
"Max-Planck-Institut f\u00fcr Mikrostrukturphysik, 06120, Halle (Saale), Germany"
],
"type": "Organization"
},
"familyName": "Werner",
"givenName": "P.",
"id": "sg:person.0703230070.47",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703230070.47"
],
"type": "Person"
}
],
"datePublished": "2006-02",
"datePublishedReg": "2006-02-01",
"description": "The energy band diagram of the multilayered Ge0.8Si0.2/Ge0.1Si0.9 heterostructures with vertically correlated quantum dots is analyzed theoretically. With regard to fluctuations of the thickness layer in the columns of quantum dots and to the exciton-phonon coupling, it is shown that the electron states constitute a miniband. The hole wave functions remain localized in the quantum dots. The spectrum of optical transitions calculated for a 20-layered structure at room temperature is in good agreement with the experimental photoluminescence spectrum that involves an intense band at about 1.6 \u03bcm. From theoretical considerations and experimental measurements, specific evidence for the miniband in the superlattice is deduced; it is found that the overlap integrals of the wave functions of electrons and holes and the integrated intensity of the photoluminescence band of the Ge quantum dots are described by quadratic functions of the number of the structure periods.",
"genre": "article",
"id": "sg:pub.10.1134/s1063782606020205",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136692",
"issn": [
"1063-7826",
"1090-6479"
],
"name": "Semiconductors",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "40"
}
],
"keywords": [
"quantum dots",
"wave functions",
"hole wave functions",
"experimental photoluminescence spectra",
"Ge quantum dots",
"energy band diagram",
"exciton-phonon coupling",
"optical transitions",
"electron states",
"band structure",
"band diagram",
"photoluminescence spectra",
"structure period",
"photoluminescence band",
"overlap integrals",
"dots",
"integrated intensity",
"minibands",
"experimental measurements",
"room temperature",
"intense band",
"superlattices",
"good agreement",
"spectra",
"thickness layer",
"band",
"electrons",
"heterostructures",
"photoluminescence",
"holes",
"theoretical considerations",
"coupling",
"transition",
"structure",
"fluctuations",
"measurements",
"intensity",
"agreement",
"diagram",
"layer",
"state",
"temperature",
"integrals",
"function",
"quadratic function",
"number",
"consideration",
"column",
"evidence",
"period",
"regard",
"specific evidence"
],
"name": "The band structure and photoluminescence in a Ge0.8Si0.2/Ge0.1Si0.9 superlattice with vertically correlated quantum dots",
"pagination": "224-228",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1015955654"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s1063782606020205"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s1063782606020205",
"https://app.dimensions.ai/details/publication/pub.1015955654"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:23",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_419.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s1063782606020205"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063782606020205'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063782606020205'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063782606020205'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063782606020205'
This table displays all metadata directly associated to this object as RDF triples.
161 TRIPLES
21 PREDICATES
78 URIs
70 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s1063782606020205 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0202 |
3 | ″ | schema:author | Nd946795674f4460eb352ef42668fbfc8 |
4 | ″ | schema:datePublished | 2006-02 |
5 | ″ | schema:datePublishedReg | 2006-02-01 |
6 | ″ | schema:description | The energy band diagram of the multilayered Ge0.8Si0.2/Ge0.1Si0.9 heterostructures with vertically correlated quantum dots is analyzed theoretically. With regard to fluctuations of the thickness layer in the columns of quantum dots and to the exciton-phonon coupling, it is shown that the electron states constitute a miniband. The hole wave functions remain localized in the quantum dots. The spectrum of optical transitions calculated for a 20-layered structure at room temperature is in good agreement with the experimental photoluminescence spectrum that involves an intense band at about 1.6 μm. From theoretical considerations and experimental measurements, specific evidence for the miniband in the superlattice is deduced; it is found that the overlap integrals of the wave functions of electrons and holes and the integrated intensity of the photoluminescence band of the Ge quantum dots are described by quadratic functions of the number of the structure periods. |
7 | ″ | schema:genre | article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N3d843f2ea2d84749b9d20c2a4e24f2f3 |
11 | ″ | ″ | Ndf267c0ab4e64726ab25d6f313a7e89a |
12 | ″ | ″ | sg:journal.1136692 |
13 | ″ | schema:keywords | Ge quantum dots |
14 | ″ | ″ | agreement |
15 | ″ | ″ | band |
16 | ″ | ″ | band diagram |
17 | ″ | ″ | band structure |
18 | ″ | ″ | column |
19 | ″ | ″ | consideration |
20 | ″ | ″ | coupling |
21 | ″ | ″ | diagram |
22 | ″ | ″ | dots |
23 | ″ | ″ | electron states |
24 | ″ | ″ | electrons |
25 | ″ | ″ | energy band diagram |
26 | ″ | ″ | evidence |
27 | ″ | ″ | exciton-phonon coupling |
28 | ″ | ″ | experimental measurements |
29 | ″ | ″ | experimental photoluminescence spectra |
30 | ″ | ″ | fluctuations |
31 | ″ | ″ | function |
32 | ″ | ″ | good agreement |
33 | ″ | ″ | heterostructures |
34 | ″ | ″ | hole wave functions |
35 | ″ | ″ | holes |
36 | ″ | ″ | integrals |
37 | ″ | ″ | integrated intensity |
38 | ″ | ″ | intense band |
39 | ″ | ″ | intensity |
40 | ″ | ″ | layer |
41 | ″ | ″ | measurements |
42 | ″ | ″ | minibands |
43 | ″ | ″ | number |
44 | ″ | ″ | optical transitions |
45 | ″ | ″ | overlap integrals |
46 | ″ | ″ | period |
47 | ″ | ″ | photoluminescence |
48 | ″ | ″ | photoluminescence band |
49 | ″ | ″ | photoluminescence spectra |
50 | ″ | ″ | quadratic function |
51 | ″ | ″ | quantum dots |
52 | ″ | ″ | regard |
53 | ″ | ″ | room temperature |
54 | ″ | ″ | specific evidence |
55 | ″ | ″ | spectra |
56 | ″ | ″ | state |
57 | ″ | ″ | structure |
58 | ″ | ″ | structure period |
59 | ″ | ″ | superlattices |
60 | ″ | ″ | temperature |
61 | ″ | ″ | theoretical considerations |
62 | ″ | ″ | thickness layer |
63 | ″ | ″ | transition |
64 | ″ | ″ | wave functions |
65 | ″ | schema:name | The band structure and photoluminescence in a Ge0.8Si0.2/Ge0.1Si0.9 superlattice with vertically correlated quantum dots |
66 | ″ | schema:pagination | 224-228 |
67 | ″ | schema:productId | N139cb994ff944b81a4d7a2b9c029886d |
68 | ″ | ″ | N2f7e594ae26a4841be64f90014b35bd4 |
69 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1015955654 |
70 | ″ | ″ | https://doi.org/10.1134/s1063782606020205 |
71 | ″ | schema:sdDatePublished | 2022-05-20T07:23 |
72 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
73 | ″ | schema:sdPublisher | N503e96b4f0e04f1fbcc8f7f4da5d257a |
74 | ″ | schema:url | https://doi.org/10.1134/s1063782606020205 |
75 | ″ | sgo:license | sg:explorer/license/ |
76 | ″ | sgo:sdDataset | articles |
77 | ″ | rdf:type | schema:ScholarlyArticle |
78 | N139cb994ff944b81a4d7a2b9c029886d | schema:name | dimensions_id |
79 | ″ | schema:value | pub.1015955654 |
80 | ″ | rdf:type | schema:PropertyValue |
81 | N1a5e1f4f14d9495294c9c27f078dfd21 | rdf:first | sg:person.0615207126.40 |
82 | ″ | rdf:rest | Nf5a8df4498234fa28be97808079c703b |
83 | N1be6f0dc3f6c4ed58b9c52a3f19a7966 | rdf:first | sg:person.010544170161.07 |
84 | ″ | rdf:rest | Nffc8d1c75395471082d66bdb68ab3807 |
85 | N1d6dea68fedb431f933acbc8f82ba083 | rdf:first | sg:person.0652004760.89 |
86 | ″ | rdf:rest | N1be6f0dc3f6c4ed58b9c52a3f19a7966 |
87 | N2f7e594ae26a4841be64f90014b35bd4 | schema:name | doi |
88 | ″ | schema:value | 10.1134/s1063782606020205 |
89 | ″ | rdf:type | schema:PropertyValue |
90 | N3d843f2ea2d84749b9d20c2a4e24f2f3 | schema:volumeNumber | 40 |
91 | ″ | rdf:type | schema:PublicationVolume |
92 | N503e96b4f0e04f1fbcc8f7f4da5d257a | schema:name | Springer Nature - SN SciGraph project |
93 | ″ | rdf:type | schema:Organization |
94 | N5707e81c50a8490abe37cb0eef552b84 | rdf:first | sg:person.014222264064.92 |
95 | ″ | rdf:rest | N1d6dea68fedb431f933acbc8f82ba083 |
96 | Nd946795674f4460eb352ef42668fbfc8 | rdf:first | sg:person.014160371011.24 |
97 | ″ | rdf:rest | N1a5e1f4f14d9495294c9c27f078dfd21 |
98 | Ndf267c0ab4e64726ab25d6f313a7e89a | schema:issueNumber | 2 |
99 | ″ | rdf:type | schema:PublicationIssue |
100 | Nf5a8df4498234fa28be97808079c703b | rdf:first | sg:person.012377461417.99 |
101 | ″ | rdf:rest | N5707e81c50a8490abe37cb0eef552b84 |
102 | Nffc8d1c75395471082d66bdb68ab3807 | rdf:first | sg:person.0703230070.47 |
103 | ″ | rdf:rest | rdf:nil |
104 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
105 | ″ | schema:name | Physical Sciences |
106 | ″ | rdf:type | schema:DefinedTerm |
107 | anzsrc-for:0202 | schema:inDefinedTermSet | anzsrc-for: |
108 | ″ | schema:name | Atomic, Molecular, Nuclear, Particle and Plasma Physics |
109 | ″ | rdf:type | schema:DefinedTerm |
110 | sg:journal.1136692 | schema:issn | 1063-7826 |
111 | ″ | ″ | 1090-6479 |
112 | ″ | schema:name | Semiconductors |
113 | ″ | schema:publisher | Pleiades Publishing |
114 | ″ | rdf:type | schema:Periodical |
115 | sg:person.010544170161.07 | schema:affiliation | grid-institutes:grid.450270.4 |
116 | ″ | schema:familyName | Zakharov |
117 | ″ | schema:givenName | N. D. |
118 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010544170161.07 |
119 | ″ | rdf:type | schema:Person |
120 | sg:person.012377461417.99 | schema:affiliation | grid-institutes:grid.423485.c |
121 | ″ | schema:familyName | Tonkikh |
122 | ″ | schema:givenName | A. A. |
123 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012377461417.99 |
124 | ″ | rdf:type | schema:Person |
125 | sg:person.014160371011.24 | schema:affiliation | grid-institutes:grid.434964.8 |
126 | ″ | schema:familyName | Sibirev |
127 | ″ | schema:givenName | N. V. |
128 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014160371011.24 |
129 | ″ | rdf:type | schema:Person |
130 | sg:person.014222264064.92 | schema:affiliation | grid-institutes:grid.423485.c |
131 | ″ | schema:familyName | Cirlin |
132 | ″ | schema:givenName | G. E. |
133 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014222264064.92 |
134 | ″ | rdf:type | schema:Person |
135 | sg:person.0615207126.40 | schema:affiliation | grid-institutes:grid.450270.4 |
136 | ″ | schema:familyName | Talalaev |
137 | ″ | schema:givenName | V. G. |
138 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615207126.40 |
139 | ″ | rdf:type | schema:Person |
140 | sg:person.0652004760.89 | schema:affiliation | grid-institutes:grid.423485.c |
141 | ″ | schema:familyName | Dubrovskiĭ |
142 | ″ | schema:givenName | V. G. |
143 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652004760.89 |
144 | ″ | rdf:type | schema:Person |
145 | sg:person.0703230070.47 | schema:affiliation | grid-institutes:grid.450270.4 |
146 | ″ | schema:familyName | Werner |
147 | ″ | schema:givenName | P. |
148 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703230070.47 |
149 | ″ | rdf:type | schema:Person |
150 | grid-institutes:grid.423485.c | schema:alternateName | Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia |
151 | ″ | schema:name | Institute for Analytical Instrumentation, Russian Academy of Sciences, 190103, St. Petersburg, Russia |
152 | ″ | ″ | Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia |
153 | ″ | ″ | Max-Planck-Institut für Mikrostrukturphysik, 06120, Halle (Saale), Germany |
154 | ″ | rdf:type | schema:Organization |
155 | grid-institutes:grid.434964.8 | schema:alternateName | Institute for Analytical Instrumentation, Russian Academy of Sciences, 190103, St. Petersburg, Russia |
156 | ″ | schema:name | Institute for Analytical Instrumentation, Russian Academy of Sciences, 190103, St. Petersburg, Russia |
157 | ″ | rdf:type | schema:Organization |
158 | grid-institutes:grid.450270.4 | schema:alternateName | Max-Planck-Institut für Mikrostrukturphysik, 06120, Halle (Saale), Germany |
159 | ″ | schema:name | Fock Institute of Physics (Petrodvorets Branch), St. Petersburg State University, 198504, Petrodvorets, Russia |
160 | ″ | ″ | Max-Planck-Institut für Mikrostrukturphysik, 06120, Halle (Saale), Germany |
161 | ″ | rdf:type | schema:Organization |