3D Magnetic Holes in Collisionless Plasmas View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-08

AUTHORS

P. Shustov, A. Artemyev, E. Yushkov, I. Vasko

ABSTRACT

Recent multispacecraft observations in the Earth’s magnetosphere have revealed an abundance of magnetic holes—localized magnetic field depressions. These magnetic holes are characterized by the plasma pressure enhancement and strongly localized currents flowing around the hole boundaries. There are several numerical and analytical models describing 2D configurations of magnetic holes, but the 3D distribution of magnetic fields and electric currents is studied poorly. Such a 3D magnetic field configuration is important for accurate investigation of charged particle dynamics within magnetic holes. Moreover, the 3D distribution of currents can be used for distant probing of magnetic holes in the magnetosphere. In this study, a 3D magnetic hole model using the single-fluid approximation and a spatial scale hierarchy with the distinct separation of gradients is developed. It is shown that such 3D holes can be obtained as a generalization of 1D models with the plasma pressure distribution adopted from the kinetic approach. The proposed model contains two magnetic field components and field-aligned currents. The magnetic field line configuration resembles the magnetic trap where hot charged particles bounce between mirror points. However, the approximation of isotropic pressure results in a constant plasma pressure along magnetic field lines, and the proposed magnetic hole model does not confine plasma along the field direction. More... »

PAGES

729-737

References to SciGraph publications

  • 2012-11. Particle Acceleration in the Magnetotail and Aurora in SPACE SCIENCE REVIEWS
  • 2013-10. In-Situ Observations of Reconnection in Space in SPACE SCIENCE REVIEWS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s1063780x18080068

    DOI

    http://dx.doi.org/10.1134/s1063780x18080068

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106174795


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Moscow State University", 
              "id": "https://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Space Research Institute, Russian Academy of Sciences, 117997, Moscow, Russia", 
                "Department of Physics, Moscow State University, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shustov", 
            "givenName": "P.", 
            "id": "sg:person.012257200675.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012257200675.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California Los Angeles", 
              "id": "https://www.grid.ac/institutes/grid.19006.3e", 
              "name": [
                "Department of Physics, Moscow State University, 119991, Moscow, Russia", 
                "Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Artemyev", 
            "givenName": "A.", 
            "id": "sg:person.01036726624.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036726624.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Moscow State University", 
              "id": "https://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Space Research Institute, Russian Academy of Sciences, 117997, Moscow, Russia", 
                "Department of Physics, Moscow State University, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yushkov", 
            "givenName": "E.", 
            "id": "sg:person.015511616031.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015511616031.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, Berkeley", 
              "id": "https://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Physics, Moscow State University, 119991, Moscow, Russia", 
                "Space Sciences Laboratory of University of California, Berkeley, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vasko", 
            "givenName": "I.", 
            "id": "sg:person.015133460637.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015133460637.95"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s1364-6826(02)00024-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002070799"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5194/angeo-29-717-2011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007820515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2010ja015758", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008225728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/2016gl069157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010710354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11214-012-9957-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011079540", 
              "https://doi.org/10.1007/s11214-012-9957-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/2016gl069601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017948231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2008gl034096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019461882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/2014ja020856", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019685017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/2016ja022424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020888833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/ja082i001p00147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024188423"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rsta.2014.0151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035469994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/2007ja012649", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042096063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5194/angeo-34-1099-2016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042195210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-1573(78)90016-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042265053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-1573(78)90016-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042265053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11214-012-9874-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044766455", 
              "https://doi.org/10.1007/s11214-012-9874-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4972093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047280460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4906356", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050449814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/2016gl068545", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051478321"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/ja083ia12p05579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051589029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1710990", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057779368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4919027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058093513"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.98.235003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060834149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.98.235003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060834149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1119/1.1976373", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062245783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5194/angeo-34-1-2016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072661356"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/2017ja024197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091086479"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-08", 
        "datePublishedReg": "2018-08-01", 
        "description": "Recent multispacecraft observations in the Earth\u2019s magnetosphere have revealed an abundance of magnetic holes\u2014localized magnetic field depressions. These magnetic holes are characterized by the plasma pressure enhancement and strongly localized currents flowing around the hole boundaries. There are several numerical and analytical models describing 2D configurations of magnetic holes, but the 3D distribution of magnetic fields and electric currents is studied poorly. Such a 3D magnetic field configuration is important for accurate investigation of charged particle dynamics within magnetic holes. Moreover, the 3D distribution of currents can be used for distant probing of magnetic holes in the magnetosphere. In this study, a 3D magnetic hole model using the single-fluid approximation and a spatial scale hierarchy with the distinct separation of gradients is developed. It is shown that such 3D holes can be obtained as a generalization of 1D models with the plasma pressure distribution adopted from the kinetic approach. The proposed model contains two magnetic field components and field-aligned currents. The magnetic field line configuration resembles the magnetic trap where hot charged particles bounce between mirror points. However, the approximation of isotropic pressure results in a constant plasma pressure along magnetic field lines, and the proposed magnetic hole model does not confine plasma along the field direction.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s1063780x18080068", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136237", 
            "issn": [
              "1063-780X", 
              "1562-6938"
            ], 
            "name": "Plasma Physics Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "44"
          }
        ], 
        "name": "3D Magnetic Holes in Collisionless Plasmas", 
        "pagination": "729-737", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "211bb9e2af3aac7660535937c20b50c7c226231193d435c37faf1a21fc68fd03"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s1063780x18080068"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106174795"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s1063780x18080068", 
          "https://app.dimensions.ai/details/publication/pub.1106174795"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000494.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1134/S1063780X18080068"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063780x18080068'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063780x18080068'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063780x18080068'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063780x18080068'


     

    This table displays all metadata directly associated to this object as RDF triples.

    168 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s1063780x18080068 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author Nd8972013132b4591b74d0ecad5bd9132
    4 schema:citation sg:pub.10.1007/s11214-012-9874-4
    5 sg:pub.10.1007/s11214-012-9957-2
    6 https://doi.org/10.1002/2014ja020856
    7 https://doi.org/10.1002/2016gl068545
    8 https://doi.org/10.1002/2016gl069157
    9 https://doi.org/10.1002/2016gl069601
    10 https://doi.org/10.1002/2016ja022424
    11 https://doi.org/10.1002/2017ja024197
    12 https://doi.org/10.1016/0370-1573(78)90016-9
    13 https://doi.org/10.1016/s1364-6826(02)00024-x
    14 https://doi.org/10.1029/2007ja012649
    15 https://doi.org/10.1029/2008gl034096
    16 https://doi.org/10.1029/2010ja015758
    17 https://doi.org/10.1029/ja082i001p00147
    18 https://doi.org/10.1029/ja083ia12p05579
    19 https://doi.org/10.1063/1.1710990
    20 https://doi.org/10.1063/1.4906356
    21 https://doi.org/10.1063/1.4919027
    22 https://doi.org/10.1063/1.4972093
    23 https://doi.org/10.1098/rsta.2014.0151
    24 https://doi.org/10.1103/physrevlett.98.235003
    25 https://doi.org/10.1119/1.1976373
    26 https://doi.org/10.5194/angeo-29-717-2011
    27 https://doi.org/10.5194/angeo-34-1-2016
    28 https://doi.org/10.5194/angeo-34-1099-2016
    29 schema:datePublished 2018-08
    30 schema:datePublishedReg 2018-08-01
    31 schema:description Recent multispacecraft observations in the Earth’s magnetosphere have revealed an abundance of magnetic holes—localized magnetic field depressions. These magnetic holes are characterized by the plasma pressure enhancement and strongly localized currents flowing around the hole boundaries. There are several numerical and analytical models describing 2D configurations of magnetic holes, but the 3D distribution of magnetic fields and electric currents is studied poorly. Such a 3D magnetic field configuration is important for accurate investigation of charged particle dynamics within magnetic holes. Moreover, the 3D distribution of currents can be used for distant probing of magnetic holes in the magnetosphere. In this study, a 3D magnetic hole model using the single-fluid approximation and a spatial scale hierarchy with the distinct separation of gradients is developed. It is shown that such 3D holes can be obtained as a generalization of 1D models with the plasma pressure distribution adopted from the kinetic approach. The proposed model contains two magnetic field components and field-aligned currents. The magnetic field line configuration resembles the magnetic trap where hot charged particles bounce between mirror points. However, the approximation of isotropic pressure results in a constant plasma pressure along magnetic field lines, and the proposed magnetic hole model does not confine plasma along the field direction.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree false
    35 schema:isPartOf N5e4ad6f23d354ebc871ff294b9ac0f74
    36 N73061e62ac15401ca74262c83706d570
    37 sg:journal.1136237
    38 schema:name 3D Magnetic Holes in Collisionless Plasmas
    39 schema:pagination 729-737
    40 schema:productId N1c4de9dc8dcf4f7e9f41962c27f9a613
    41 N2814ffc2a8be4e4390fcfe81334f87ba
    42 N7b499f74aa274fa491a7bdc5c81486df
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106174795
    44 https://doi.org/10.1134/s1063780x18080068
    45 schema:sdDatePublished 2019-04-10T16:38
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher N3bf98ddcc46b45aea40fa4dcc86f08fd
    48 schema:url http://link.springer.com/10.1134/S1063780X18080068
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N1c4de9dc8dcf4f7e9f41962c27f9a613 schema:name doi
    53 schema:value 10.1134/s1063780x18080068
    54 rdf:type schema:PropertyValue
    55 N23176d47da4b4f1390378ef78a523040 rdf:first sg:person.015511616031.34
    56 rdf:rest N25e24318fdee4f649c857839e8497521
    57 N25e24318fdee4f649c857839e8497521 rdf:first sg:person.015133460637.95
    58 rdf:rest rdf:nil
    59 N2814ffc2a8be4e4390fcfe81334f87ba schema:name dimensions_id
    60 schema:value pub.1106174795
    61 rdf:type schema:PropertyValue
    62 N3bf98ddcc46b45aea40fa4dcc86f08fd schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 N5e4ad6f23d354ebc871ff294b9ac0f74 schema:issueNumber 8
    65 rdf:type schema:PublicationIssue
    66 N73061e62ac15401ca74262c83706d570 schema:volumeNumber 44
    67 rdf:type schema:PublicationVolume
    68 N7b499f74aa274fa491a7bdc5c81486df schema:name readcube_id
    69 schema:value 211bb9e2af3aac7660535937c20b50c7c226231193d435c37faf1a21fc68fd03
    70 rdf:type schema:PropertyValue
    71 N7e401b4e86f94db79f29266c61e3d714 rdf:first sg:person.01036726624.07
    72 rdf:rest N23176d47da4b4f1390378ef78a523040
    73 Nd8972013132b4591b74d0ecad5bd9132 rdf:first sg:person.012257200675.75
    74 rdf:rest N7e401b4e86f94db79f29266c61e3d714
    75 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Physical Sciences
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    80 rdf:type schema:DefinedTerm
    81 sg:journal.1136237 schema:issn 1063-780X
    82 1562-6938
    83 schema:name Plasma Physics Reports
    84 rdf:type schema:Periodical
    85 sg:person.01036726624.07 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
    86 schema:familyName Artemyev
    87 schema:givenName A.
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01036726624.07
    89 rdf:type schema:Person
    90 sg:person.012257200675.75 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
    91 schema:familyName Shustov
    92 schema:givenName P.
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012257200675.75
    94 rdf:type schema:Person
    95 sg:person.015133460637.95 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
    96 schema:familyName Vasko
    97 schema:givenName I.
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015133460637.95
    99 rdf:type schema:Person
    100 sg:person.015511616031.34 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
    101 schema:familyName Yushkov
    102 schema:givenName E.
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015511616031.34
    104 rdf:type schema:Person
    105 sg:pub.10.1007/s11214-012-9874-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044766455
    106 https://doi.org/10.1007/s11214-012-9874-4
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/s11214-012-9957-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011079540
    109 https://doi.org/10.1007/s11214-012-9957-2
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1002/2014ja020856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019685017
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1002/2016gl068545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051478321
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1002/2016gl069157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010710354
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1002/2016gl069601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017948231
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1002/2016ja022424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020888833
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1002/2017ja024197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091086479
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/0370-1573(78)90016-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042265053
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/s1364-6826(02)00024-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002070799
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1029/2007ja012649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042096063
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1029/2008gl034096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019461882
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1029/2010ja015758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008225728
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1029/ja082i001p00147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024188423
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1029/ja083ia12p05579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051589029
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1063/1.1710990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057779368
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1063/1.4906356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050449814
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1063/1.4919027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058093513
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1063/1.4972093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047280460
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1098/rsta.2014.0151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035469994
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1103/physrevlett.98.235003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834149
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1119/1.1976373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062245783
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.5194/angeo-29-717-2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007820515
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.5194/angeo-34-1-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072661356
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.5194/angeo-34-1099-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042195210
    156 rdf:type schema:CreativeWork
    157 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
    158 schema:name Department of Physics, Moscow State University, 119991, Moscow, Russia
    159 Space Research Institute, Russian Academy of Sciences, 117997, Moscow, Russia
    160 rdf:type schema:Organization
    161 https://www.grid.ac/institutes/grid.19006.3e schema:alternateName University of California Los Angeles
    162 schema:name Department of Physics, Moscow State University, 119991, Moscow, Russia
    163 Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA, USA
    164 rdf:type schema:Organization
    165 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
    166 schema:name Department of Physics, Moscow State University, 119991, Moscow, Russia
    167 Space Sciences Laboratory of University of California, Berkeley, CA, USA
    168 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...