Nonstationary model of an axisymmetric mirror trap with nonequilibrium plasma View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-03

AUTHORS

D. V. Yurov, V. V. Prikhodko, Yu. A. Tsidulko

ABSTRACT

The DOL nonstationary model intended to describe plasma processes in axisymmetric magnetic mirror traps is considered. The model uses averaging over the bounce period in order to take into account the dependence of plasma parameters on the coordinate along the facility axis. Examples of calculations of trap parameters by means of the DOL code based on this model are presented. Among the features of the DOL model, one can single out two points: first, the capability of calculating the terms of the collision integral with the use of a non-Maxwellian scattering function while evaluating the distribution function of fast ions and, second, concerning the background plasma, the capability of calculating the longitudinal particle and energy fluxes in confinement modes with the particle mean free path being on the order of the trap length. The influence of the scattering function approximation used to calculate the collision integral on the solution to the kinetic equation is analyzed. The dependences of plasma parameters on the power of heating injectors and the length of the fast-ion turning zone are presented as calculation examples. The longitudinal profile of the fusion reaction rate in the case of a trap with a long fast-ion turning zone is shown to depend strongly on the input parameters of the model. More... »

PAGES

210-225

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063780x16030090

DOI

http://dx.doi.org/10.1134/s1063780x16030090

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003677748


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 11, 630090, Novosibirsk, Russia", 
            "Nuclear Safety Institute, Russian Academy of Sciences, Bol\u2019shaya Tul\u2019skaya ul. 52, 115191, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yurov", 
        "givenName": "D. V.", 
        "id": "sg:person.010077320511.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010077320511.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University", 
          "id": "https://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 11, 630090, Novosibirsk, Russia", 
            "Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prikhodko", 
        "givenName": "V. V.", 
        "id": "sg:person.01016326013.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016326013.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 11, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsidulko", 
        "givenName": "Yu. A.", 
        "id": "sg:person.0666110641.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666110641.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.anucene.2007.12.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004830937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fusengdes.2012.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006783353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst14-867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007002656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1027396724", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-85954-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027396724", 
          "https://doi.org/10.1007/978-3-642-85954-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-85954-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027396724", 
          "https://doi.org/10.1007/978-3-642-85954-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(86)90060-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033434963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063780x12080090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033786937", 
          "https://doi.org/10.1134/s1063780x12080090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.205001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050168177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.205001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050168177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063780x15100025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050434505", 
          "https://doi.org/10.1134/s1063780x15100025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0029-5515/20/8/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058983113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst11-a11568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091169716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst11-a11568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091169716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst11-a11608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091169754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst11-a11608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091169754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst13-a16939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091170455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst13-a16939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091170455"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-03", 
    "datePublishedReg": "2016-03-01", 
    "description": "The DOL nonstationary model intended to describe plasma processes in axisymmetric magnetic mirror traps is considered. The model uses averaging over the bounce period in order to take into account the dependence of plasma parameters on the coordinate along the facility axis. Examples of calculations of trap parameters by means of the DOL code based on this model are presented. Among the features of the DOL model, one can single out two points: first, the capability of calculating the terms of the collision integral with the use of a non-Maxwellian scattering function while evaluating the distribution function of fast ions and, second, concerning the background plasma, the capability of calculating the longitudinal particle and energy fluxes in confinement modes with the particle mean free path being on the order of the trap length. The influence of the scattering function approximation used to calculate the collision integral on the solution to the kinetic equation is analyzed. The dependences of plasma parameters on the power of heating injectors and the length of the fast-ion turning zone are presented as calculation examples. The longitudinal profile of the fusion reaction rate in the case of a trap with a long fast-ion turning zone is shown to depend strongly on the input parameters of the model.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063780x16030090", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136237", 
        "issn": [
          "1063-780X", 
          "1562-6938"
        ], 
        "name": "Plasma Physics Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "42"
      }
    ], 
    "name": "Nonstationary model of an axisymmetric mirror trap with nonequilibrium plasma", 
    "pagination": "210-225", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1184e9ba75096adf363e5e91f9a0b59c970a5fcad1c9c657e91a04112e244000"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063780x16030090"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003677748"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063780x16030090", 
      "https://app.dimensions.ai/details/publication/pub.1003677748"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS1063780X16030090"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063780x16030090'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063780x16030090'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063780x16030090'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063780x16030090'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063780x16030090 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N7122ac6fbc214cadad29bf188af97da0
4 schema:citation sg:pub.10.1007/978-3-642-85954-0
5 sg:pub.10.1134/s1063780x12080090
6 sg:pub.10.1134/s1063780x15100025
7 https://app.dimensions.ai/details/publication/pub.1027396724
8 https://doi.org/10.1016/0021-9991(86)90060-4
9 https://doi.org/10.1016/j.anucene.2007.12.012
10 https://doi.org/10.1016/j.fusengdes.2012.07.005
11 https://doi.org/10.1088/0029-5515/20/8/007
12 https://doi.org/10.1103/physrevlett.114.205001
13 https://doi.org/10.13182/fst11-a11568
14 https://doi.org/10.13182/fst11-a11608
15 https://doi.org/10.13182/fst13-a16939
16 https://doi.org/10.13182/fst14-867
17 schema:datePublished 2016-03
18 schema:datePublishedReg 2016-03-01
19 schema:description The DOL nonstationary model intended to describe plasma processes in axisymmetric magnetic mirror traps is considered. The model uses averaging over the bounce period in order to take into account the dependence of plasma parameters on the coordinate along the facility axis. Examples of calculations of trap parameters by means of the DOL code based on this model are presented. Among the features of the DOL model, one can single out two points: first, the capability of calculating the terms of the collision integral with the use of a non-Maxwellian scattering function while evaluating the distribution function of fast ions and, second, concerning the background plasma, the capability of calculating the longitudinal particle and energy fluxes in confinement modes with the particle mean free path being on the order of the trap length. The influence of the scattering function approximation used to calculate the collision integral on the solution to the kinetic equation is analyzed. The dependences of plasma parameters on the power of heating injectors and the length of the fast-ion turning zone are presented as calculation examples. The longitudinal profile of the fusion reaction rate in the case of a trap with a long fast-ion turning zone is shown to depend strongly on the input parameters of the model.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N637c32ed27d14c3da1f8cd6e38e680ca
24 Nf9bc84a9119a4d6cac8faf7941e23275
25 sg:journal.1136237
26 schema:name Nonstationary model of an axisymmetric mirror trap with nonequilibrium plasma
27 schema:pagination 210-225
28 schema:productId N8141d7c1a18c46568d15ec3cc4139e4f
29 Nc046e91721fd4437b04ede72806d1f73
30 Ncb96f7bfede3432d8679e7bac88f79f2
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003677748
32 https://doi.org/10.1134/s1063780x16030090
33 schema:sdDatePublished 2019-04-10T19:55
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N4f299b4bfe4c4524bab42bf0fdf397ce
36 schema:url http://link.springer.com/10.1134%2FS1063780X16030090
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N1b2759eb9e1b4318ad7b88d8e7779f03 rdf:first sg:person.01016326013.58
41 rdf:rest N94bd6b5ccbde4953b1ac4a64058a3765
42 N4f299b4bfe4c4524bab42bf0fdf397ce schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N637c32ed27d14c3da1f8cd6e38e680ca schema:issueNumber 3
45 rdf:type schema:PublicationIssue
46 N7122ac6fbc214cadad29bf188af97da0 rdf:first sg:person.010077320511.11
47 rdf:rest N1b2759eb9e1b4318ad7b88d8e7779f03
48 N8141d7c1a18c46568d15ec3cc4139e4f schema:name doi
49 schema:value 10.1134/s1063780x16030090
50 rdf:type schema:PropertyValue
51 N94bd6b5ccbde4953b1ac4a64058a3765 rdf:first sg:person.0666110641.40
52 rdf:rest rdf:nil
53 Nc046e91721fd4437b04ede72806d1f73 schema:name readcube_id
54 schema:value 1184e9ba75096adf363e5e91f9a0b59c970a5fcad1c9c657e91a04112e244000
55 rdf:type schema:PropertyValue
56 Ncb96f7bfede3432d8679e7bac88f79f2 schema:name dimensions_id
57 schema:value pub.1003677748
58 rdf:type schema:PropertyValue
59 Nf9bc84a9119a4d6cac8faf7941e23275 schema:volumeNumber 42
60 rdf:type schema:PublicationVolume
61 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
62 schema:name Physical Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
65 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
66 rdf:type schema:DefinedTerm
67 sg:journal.1136237 schema:issn 1063-780X
68 1562-6938
69 schema:name Plasma Physics Reports
70 rdf:type schema:Periodical
71 sg:person.010077320511.11 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
72 schema:familyName Yurov
73 schema:givenName D. V.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010077320511.11
75 rdf:type schema:Person
76 sg:person.01016326013.58 schema:affiliation https://www.grid.ac/institutes/grid.4605.7
77 schema:familyName Prikhodko
78 schema:givenName V. V.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016326013.58
80 rdf:type schema:Person
81 sg:person.0666110641.40 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
82 schema:familyName Tsidulko
83 schema:givenName Yu. A.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666110641.40
85 rdf:type schema:Person
86 sg:pub.10.1007/978-3-642-85954-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027396724
87 https://doi.org/10.1007/978-3-642-85954-0
88 rdf:type schema:CreativeWork
89 sg:pub.10.1134/s1063780x12080090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033786937
90 https://doi.org/10.1134/s1063780x12080090
91 rdf:type schema:CreativeWork
92 sg:pub.10.1134/s1063780x15100025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050434505
93 https://doi.org/10.1134/s1063780x15100025
94 rdf:type schema:CreativeWork
95 https://app.dimensions.ai/details/publication/pub.1027396724 schema:CreativeWork
96 https://doi.org/10.1016/0021-9991(86)90060-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033434963
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.anucene.2007.12.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004830937
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.fusengdes.2012.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006783353
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1088/0029-5515/20/8/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058983113
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1103/physrevlett.114.205001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050168177
105 rdf:type schema:CreativeWork
106 https://doi.org/10.13182/fst11-a11568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091169716
107 rdf:type schema:CreativeWork
108 https://doi.org/10.13182/fst11-a11608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091169754
109 rdf:type schema:CreativeWork
110 https://doi.org/10.13182/fst13-a16939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091170455
111 rdf:type schema:CreativeWork
112 https://doi.org/10.13182/fst14-867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007002656
113 rdf:type schema:CreativeWork
114 https://www.grid.ac/institutes/grid.418495.5 schema:alternateName Budker Institute of Nuclear Physics
115 schema:name Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent’eva 11, 630090, Novosibirsk, Russia
116 rdf:type schema:Organization
117 https://www.grid.ac/institutes/grid.4605.7 schema:alternateName Novosibirsk State University
118 schema:name Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent’eva 11, 630090, Novosibirsk, Russia
119 Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia
120 rdf:type schema:Organization
121 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
122 schema:name Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent’eva 11, 630090, Novosibirsk, Russia
123 Nuclear Safety Institute, Russian Academy of Sciences, Bol’shaya Tul’skaya ul. 52, 115191, Moscow, Russia
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...