Ontology type: schema:ScholarlyArticle
2013-11-15
AUTHORS ABSTRACTAn elementary theory of an annular high-current electron beam in a uniform transport channel and a coaxial magnetically insulated diode is generalized to the case of counterpropagating electron beams with a spread over kinetic energies. Expressions for the sum of the absolute values of the forward and backward currents in a uniform transport channel and for the flux of the longitudinal component of the generalized momentum in a coaxial magnetically insulated diode as functions of the maximum electron kinetic energy are derived for different values of the relative width of the energy distribution function. It is shown that, in a diode with an expanding transport channel and a virtual cathode limiting the extracted current, counterpropagating particle flows are established between the cathode and the virtual cathode within a certain time interval after the beginning of electron emission. The accumulation of electrons in these flows is accompanied by an increase in their spread over kinetic energies and the simultaneous decrease in the maximum kinetic energy. The developed model agrees with the results of particle-in-cell simulations performed using the KARAT and OOPIC-Pro codes. More... »
PAGES936-946
http://scigraph.springernature.com/pub.10.1134/s1063780x13110056
DOIhttp://dx.doi.org/10.1134/s1063780x13110056
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1024679037
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Akademicheskii pr. 2/3, 634055, Tomsk, Russia",
"id": "http://www.grid.ac/institutes/grid.465280.d",
"name": [
"Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Akademicheskii pr. 2/3, 634055, Tomsk, Russia"
],
"type": "Organization"
},
"familyName": "Grishkov",
"givenName": "A. A.",
"id": "sg:person.012745175563.28",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012745175563.28"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Tomsk National Research Polytechnic University, pr. Lenina 30, 634050, Tomsk, Russia",
"id": "http://www.grid.ac/institutes/grid.27736.37",
"name": [
"Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Akademicheskii pr. 2/3, 634055, Tomsk, Russia",
"Tomsk National Research Polytechnic University, pr. Lenina 30, 634050, Tomsk, Russia"
],
"type": "Organization"
},
"familyName": "Pegel",
"givenName": "I. V.",
"id": "sg:person.012101533211.26",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012101533211.26"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1134/1.1379642",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046179009",
"https://doi.org/10.1134/1.1379642"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/1.1606783",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006172578",
"https://doi.org/10.1134/1.1606783"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/1.1846858",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026108134",
"https://doi.org/10.1134/1.1846858"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/1.2136972",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051676379",
"https://doi.org/10.1134/1.2136972"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s106378500807002x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049445105",
"https://doi.org/10.1134/s106378500807002x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/1.1261915",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035192722",
"https://doi.org/10.1134/1.1261915"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/1.1631372",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006090400",
"https://doi.org/10.1134/1.1631372"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s1063780x09010073",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007627755",
"https://doi.org/10.1134/s1063780x09010073"
],
"type": "CreativeWork"
}
],
"datePublished": "2013-11-15",
"datePublishedReg": "2013-11-15",
"description": "An elementary theory of an annular high-current electron beam in a uniform transport channel and a coaxial magnetically insulated diode is generalized to the case of counterpropagating electron beams with a spread over kinetic energies. Expressions for the sum of the absolute values of the forward and backward currents in a uniform transport channel and for the flux of the longitudinal component of the generalized momentum in a coaxial magnetically insulated diode as functions of the maximum electron kinetic energy are derived for different values of the relative width of the energy distribution function. It is shown that, in a diode with an expanding transport channel and a virtual cathode limiting the extracted current, counterpropagating particle flows are established between the cathode and the virtual cathode within a certain time interval after the beginning of electron emission. The accumulation of electrons in these flows is accompanied by an increase in their spread over kinetic energies and the simultaneous decrease in the maximum kinetic energy. The developed model agrees with the results of particle-in-cell simulations performed using the KARAT and OOPIC-Pro codes.",
"genre": "article",
"id": "sg:pub.10.1134/s1063780x13110056",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136237",
"issn": [
"0360-0343",
"0367-2921"
],
"name": "Plasma Physics Reports",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "11",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "39"
}
],
"keywords": [
"high-current electron beam",
"maximum electron kinetic energy",
"electron beam",
"virtual cathode",
"kinetic energy",
"elementary theory",
"electron kinetic energy",
"transport channels",
"energy distribution function",
"maximum kinetic energy",
"distribution function",
"results of particle",
"accumulation of electrons",
"longitudinal component",
"cell simulations",
"energy spread",
"certain time interval",
"electron emission",
"backward current",
"different values",
"beam",
"diodes",
"particle flow",
"relative width",
"energy",
"absolute value",
"flow",
"coaxial",
"current",
"momentum",
"theory",
"electrons",
"time interval",
"simulations",
"Karat",
"sum",
"cathode",
"function",
"emission",
"channels",
"width",
"model",
"particles",
"flux",
"code",
"values",
"spread",
"cases",
"simultaneous decrease",
"results",
"intervals",
"components",
"expression",
"increase",
"decrease",
"beginning",
"accumulation"
],
"name": "An annular high-current electron beam with an energy spread in a coaxial magnetically insulated diode",
"pagination": "936-946",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1024679037"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s1063780x13110056"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s1063780x13110056",
"https://app.dimensions.ai/details/publication/pub.1024679037"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:08",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_616.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s1063780x13110056"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063780x13110056'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063780x13110056'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063780x13110056'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063780x13110056'
This table displays all metadata directly associated to this object as RDF triples.
158 TRIPLES
22 PREDICATES
90 URIs
74 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s1063780x13110056 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0202 |
3 | ″ | schema:author | N95285a87863d4b2babaa7ea95838026c |
4 | ″ | schema:citation | sg:pub.10.1134/1.1261915 |
5 | ″ | ″ | sg:pub.10.1134/1.1379642 |
6 | ″ | ″ | sg:pub.10.1134/1.1606783 |
7 | ″ | ″ | sg:pub.10.1134/1.1631372 |
8 | ″ | ″ | sg:pub.10.1134/1.1846858 |
9 | ″ | ″ | sg:pub.10.1134/1.2136972 |
10 | ″ | ″ | sg:pub.10.1134/s1063780x09010073 |
11 | ″ | ″ | sg:pub.10.1134/s106378500807002x |
12 | ″ | schema:datePublished | 2013-11-15 |
13 | ″ | schema:datePublishedReg | 2013-11-15 |
14 | ″ | schema:description | An elementary theory of an annular high-current electron beam in a uniform transport channel and a coaxial magnetically insulated diode is generalized to the case of counterpropagating electron beams with a spread over kinetic energies. Expressions for the sum of the absolute values of the forward and backward currents in a uniform transport channel and for the flux of the longitudinal component of the generalized momentum in a coaxial magnetically insulated diode as functions of the maximum electron kinetic energy are derived for different values of the relative width of the energy distribution function. It is shown that, in a diode with an expanding transport channel and a virtual cathode limiting the extracted current, counterpropagating particle flows are established between the cathode and the virtual cathode within a certain time interval after the beginning of electron emission. The accumulation of electrons in these flows is accompanied by an increase in their spread over kinetic energies and the simultaneous decrease in the maximum kinetic energy. The developed model agrees with the results of particle-in-cell simulations performed using the KARAT and OOPIC-Pro codes. |
15 | ″ | schema:genre | article |
16 | ″ | schema:inLanguage | en |
17 | ″ | schema:isAccessibleForFree | false |
18 | ″ | schema:isPartOf | N6f4cf80a061d44cbb43d3812c222d7ee |
19 | ″ | ″ | Nea36c4b390964d8ba9c2b28f8abdab71 |
20 | ″ | ″ | sg:journal.1136237 |
21 | ″ | schema:keywords | Karat |
22 | ″ | ″ | absolute value |
23 | ″ | ″ | accumulation |
24 | ″ | ″ | accumulation of electrons |
25 | ″ | ″ | backward current |
26 | ″ | ″ | beam |
27 | ″ | ″ | beginning |
28 | ″ | ″ | cases |
29 | ″ | ″ | cathode |
30 | ″ | ″ | cell simulations |
31 | ″ | ″ | certain time interval |
32 | ″ | ″ | channels |
33 | ″ | ″ | coaxial |
34 | ″ | ″ | code |
35 | ″ | ″ | components |
36 | ″ | ″ | current |
37 | ″ | ″ | decrease |
38 | ″ | ″ | different values |
39 | ″ | ″ | diodes |
40 | ″ | ″ | distribution function |
41 | ″ | ″ | electron beam |
42 | ″ | ″ | electron emission |
43 | ″ | ″ | electron kinetic energy |
44 | ″ | ″ | electrons |
45 | ″ | ″ | elementary theory |
46 | ″ | ″ | emission |
47 | ″ | ″ | energy |
48 | ″ | ″ | energy distribution function |
49 | ″ | ″ | energy spread |
50 | ″ | ″ | expression |
51 | ″ | ″ | flow |
52 | ″ | ″ | flux |
53 | ″ | ″ | function |
54 | ″ | ″ | high-current electron beam |
55 | ″ | ″ | increase |
56 | ″ | ″ | intervals |
57 | ″ | ″ | kinetic energy |
58 | ″ | ″ | longitudinal component |
59 | ″ | ″ | maximum electron kinetic energy |
60 | ″ | ″ | maximum kinetic energy |
61 | ″ | ″ | model |
62 | ″ | ″ | momentum |
63 | ″ | ″ | particle flow |
64 | ″ | ″ | particles |
65 | ″ | ″ | relative width |
66 | ″ | ″ | results |
67 | ″ | ″ | results of particle |
68 | ″ | ″ | simulations |
69 | ″ | ″ | simultaneous decrease |
70 | ″ | ″ | spread |
71 | ″ | ″ | sum |
72 | ″ | ″ | theory |
73 | ″ | ″ | time interval |
74 | ″ | ″ | transport channels |
75 | ″ | ″ | values |
76 | ″ | ″ | virtual cathode |
77 | ″ | ″ | width |
78 | ″ | schema:name | An annular high-current electron beam with an energy spread in a coaxial magnetically insulated diode |
79 | ″ | schema:pagination | 936-946 |
80 | ″ | schema:productId | Nc50e881bbb0c4aefb8057b229900432d |
81 | ″ | ″ | Nd6b28b4a3d4b40c798cf0e3b98f504cb |
82 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1024679037 |
83 | ″ | ″ | https://doi.org/10.1134/s1063780x13110056 |
84 | ″ | schema:sdDatePublished | 2022-05-10T10:08 |
85 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
86 | ″ | schema:sdPublisher | N4e29d0f36cca4c31a8c8daa759276561 |
87 | ″ | schema:url | https://doi.org/10.1134/s1063780x13110056 |
88 | ″ | sgo:license | sg:explorer/license/ |
89 | ″ | sgo:sdDataset | articles |
90 | ″ | rdf:type | schema:ScholarlyArticle |
91 | N4e29d0f36cca4c31a8c8daa759276561 | schema:name | Springer Nature - SN SciGraph project |
92 | ″ | rdf:type | schema:Organization |
93 | N6f4cf80a061d44cbb43d3812c222d7ee | schema:volumeNumber | 39 |
94 | ″ | rdf:type | schema:PublicationVolume |
95 | N95285a87863d4b2babaa7ea95838026c | rdf:first | sg:person.012745175563.28 |
96 | ″ | rdf:rest | Nccaba3db30e74ef88dc341507d2474dd |
97 | Nc50e881bbb0c4aefb8057b229900432d | schema:name | doi |
98 | ″ | schema:value | 10.1134/s1063780x13110056 |
99 | ″ | rdf:type | schema:PropertyValue |
100 | Nccaba3db30e74ef88dc341507d2474dd | rdf:first | sg:person.012101533211.26 |
101 | ″ | rdf:rest | rdf:nil |
102 | Nd6b28b4a3d4b40c798cf0e3b98f504cb | schema:name | dimensions_id |
103 | ″ | schema:value | pub.1024679037 |
104 | ″ | rdf:type | schema:PropertyValue |
105 | Nea36c4b390964d8ba9c2b28f8abdab71 | schema:issueNumber | 11 |
106 | ″ | rdf:type | schema:PublicationIssue |
107 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
108 | ″ | schema:name | Physical Sciences |
109 | ″ | rdf:type | schema:DefinedTerm |
110 | anzsrc-for:0202 | schema:inDefinedTermSet | anzsrc-for: |
111 | ″ | schema:name | Atomic, Molecular, Nuclear, Particle and Plasma Physics |
112 | ″ | rdf:type | schema:DefinedTerm |
113 | sg:journal.1136237 | schema:issn | 0360-0343 |
114 | ″ | ″ | 0367-2921 |
115 | ″ | schema:name | Plasma Physics Reports |
116 | ″ | schema:publisher | Pleiades Publishing |
117 | ″ | rdf:type | schema:Periodical |
118 | sg:person.012101533211.26 | schema:affiliation | grid-institutes:grid.27736.37 |
119 | ″ | schema:familyName | Pegel |
120 | ″ | schema:givenName | I. V. |
121 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012101533211.26 |
122 | ″ | rdf:type | schema:Person |
123 | sg:person.012745175563.28 | schema:affiliation | grid-institutes:grid.465280.d |
124 | ″ | schema:familyName | Grishkov |
125 | ″ | schema:givenName | A. A. |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012745175563.28 |
127 | ″ | rdf:type | schema:Person |
128 | sg:pub.10.1134/1.1261915 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1035192722 |
129 | ″ | ″ | https://doi.org/10.1134/1.1261915 |
130 | ″ | rdf:type | schema:CreativeWork |
131 | sg:pub.10.1134/1.1379642 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1046179009 |
132 | ″ | ″ | https://doi.org/10.1134/1.1379642 |
133 | ″ | rdf:type | schema:CreativeWork |
134 | sg:pub.10.1134/1.1606783 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1006172578 |
135 | ″ | ″ | https://doi.org/10.1134/1.1606783 |
136 | ″ | rdf:type | schema:CreativeWork |
137 | sg:pub.10.1134/1.1631372 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1006090400 |
138 | ″ | ″ | https://doi.org/10.1134/1.1631372 |
139 | ″ | rdf:type | schema:CreativeWork |
140 | sg:pub.10.1134/1.1846858 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1026108134 |
141 | ″ | ″ | https://doi.org/10.1134/1.1846858 |
142 | ″ | rdf:type | schema:CreativeWork |
143 | sg:pub.10.1134/1.2136972 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1051676379 |
144 | ″ | ″ | https://doi.org/10.1134/1.2136972 |
145 | ″ | rdf:type | schema:CreativeWork |
146 | sg:pub.10.1134/s1063780x09010073 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1007627755 |
147 | ″ | ″ | https://doi.org/10.1134/s1063780x09010073 |
148 | ″ | rdf:type | schema:CreativeWork |
149 | sg:pub.10.1134/s106378500807002x | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1049445105 |
150 | ″ | ″ | https://doi.org/10.1134/s106378500807002x |
151 | ″ | rdf:type | schema:CreativeWork |
152 | grid-institutes:grid.27736.37 | schema:alternateName | Tomsk National Research Polytechnic University, pr. Lenina 30, 634050, Tomsk, Russia |
153 | ″ | schema:name | Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Akademicheskii pr. 2/3, 634055, Tomsk, Russia |
154 | ″ | ″ | Tomsk National Research Polytechnic University, pr. Lenina 30, 634050, Tomsk, Russia |
155 | ″ | rdf:type | schema:Organization |
156 | grid-institutes:grid.465280.d | schema:alternateName | Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Akademicheskii pr. 2/3, 634055, Tomsk, Russia |
157 | ″ | schema:name | Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Akademicheskii pr. 2/3, 634055, Tomsk, Russia |
158 | ″ | rdf:type | schema:Organization |