Diagnostics of plasma produced by femtosecond laser pulse impact upon a target with an internal nanostructure View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-12

AUTHORS

I. Yu. Skobelev, A. Ya. Faenov, S. V. Gasilov, T. A. Pikuz, S. A. Pikuz, A. I. Magunov, A. S. Boldarev, V. A. Gasilov

ABSTRACT

X-ray diagnostics of the interaction of femtosecond laser pulses with intensities of 1016–1018 W/cm2 with CO2 clusters and frozen nanosize water particles is carried out. The stage of cluster expansion and the formation of a plasma channel, which governs the parameters of the formed X-ray radiation source and accelerated ion flows, is studied. The measurements are based on recording spatially resolved X-ray spectra of H- and He-like oxygen ions. Utilization of Rydberg transitions for spectra diagnostics makes it possible to determine plasma parameters on a time scale of t ∼ 10 ps after the beginning of a femtosecond pulse. The role of the rear edge of the laser pulse in sustaining the plasma temperature at a level of ∼100 eV in the stage of a nonadiabatic cluster expansion is shown. The analysis of the profiles and relative intensities of spectral lines allows one to determine the temperature and density of plasma electrons and distinguish the populations of “thermal” ions and ions that are accelerated up to energies of a few tens of kiloelectronvolts. It is shown that the use of solid clusters made of frozen nanoscale water droplets as targets leads to a substantial increase in the number of fast He-like ions. In this case, however, the efficiency of acceleration of H-like ions does not increase, because the time of their ionization in plasma exceeds the time of cluster expansion. More... »

PAGES

1261-1268

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063780x10130283

DOI

http://dx.doi.org/10.1134/s1063780x10130283

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020966321


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya ul. 13/19, 127412, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Skobelev", 
        "givenName": "I. Yu.", 
        "id": "sg:person.0676217044.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676217044.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya ul. 13/19, 127412, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Faenov", 
        "givenName": "A. Ya.", 
        "id": "sg:person.01160546253.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160546253.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya ul. 13/19, 127412, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gasilov", 
        "givenName": "S. V.", 
        "id": "sg:person.01221202056.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221202056.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya ul. 13/19, 127412, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pikuz", 
        "givenName": "T. A.", 
        "id": "sg:person.01050436244.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050436244.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Institute of Physics and Technology", 
          "id": "https://www.grid.ac/institutes/grid.18763.3b", 
          "name": [
            "Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya ul. 13/19, 127412, Moscow, Russia", 
            "Moscow Institute of Physics and Technology, Institutski\u012d per. 9, 141700, Dolgoprudny\u012d, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pikuz", 
        "givenName": "S. A.", 
        "id": "sg:person.013546227144.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013546227144.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Prokhorov Institute of General Physics, Russian Academy of Sciences, ul. Vavilova 38, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magunov", 
        "givenName": "A. I.", 
        "id": "sg:person.07645402257.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07645402257.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute of Mathematical Modeling, Russian Academy of Sciences, Miusskaya pl. 4a, 125047, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boldarev", 
        "givenName": "A. S.", 
        "id": "sg:person.0612562320.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612562320.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute of Mathematical Modeling, Russian Academy of Sciences, Miusskaya pl. 4a, 125047, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gasilov", 
        "givenName": "V. A.", 
        "id": "sg:person.011364675147.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011364675147.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1117/12.425651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007230867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.425651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007230867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2006.12.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008176742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2715108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008580081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/19037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053182751", 
          "https://doi.org/10.1038/19037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/19037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053182751", 
          "https://doi.org/10.1038/19037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0263034604223047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053857366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0263034604223047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053857366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0263034603211149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054065256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0263034607000110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054088537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0263034607000110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054088537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1396822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057702572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2336105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057850061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2435348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057857142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2820388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057875448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-8949/50/4/003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059000508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.53.3379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060491423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.53.3379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060491423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.63.032706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060497000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.63.032706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060497000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.64.021201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060497369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.64.021201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060497369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.65.045201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060498160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.65.045201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060498160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.66.033204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060498572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.66.033204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060498572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.063201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060499610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.063201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060499610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.71.061804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060501205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.71.061804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060501205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.73.031201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060502018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.73.031201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060502018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.62.r5931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060726152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.62.r5931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060726152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.036410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060728158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.036410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060728158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.066410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060733123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.066410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060733123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.066410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060733123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.066404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060733929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.066404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060733929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.066403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060734695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.066403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060734695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.066404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060734696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.066404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060734696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.1810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.1810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.2732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.2732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.205004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.205004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.245002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.245002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.283.5407.1505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062564396"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "X-ray diagnostics of the interaction of femtosecond laser pulses with intensities of 1016\u20131018 W/cm2 with CO2 clusters and frozen nanosize water particles is carried out. The stage of cluster expansion and the formation of a plasma channel, which governs the parameters of the formed X-ray radiation source and accelerated ion flows, is studied. The measurements are based on recording spatially resolved X-ray spectra of H- and He-like oxygen ions. Utilization of Rydberg transitions for spectra diagnostics makes it possible to determine plasma parameters on a time scale of t \u223c 10 ps after the beginning of a femtosecond pulse. The role of the rear edge of the laser pulse in sustaining the plasma temperature at a level of \u223c100 eV in the stage of a nonadiabatic cluster expansion is shown. The analysis of the profiles and relative intensities of spectral lines allows one to determine the temperature and density of plasma electrons and distinguish the populations of \u201cthermal\u201d ions and ions that are accelerated up to energies of a few tens of kiloelectronvolts. It is shown that the use of solid clusters made of frozen nanoscale water droplets as targets leads to a substantial increase in the number of fast He-like ions. In this case, however, the efficiency of acceleration of H-like ions does not increase, because the time of their ionization in plasma exceeds the time of cluster expansion.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063780x10130283", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136237", 
        "issn": [
          "1063-780X", 
          "1562-6938"
        ], 
        "name": "Plasma Physics Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "13", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "name": "Diagnostics of plasma produced by femtosecond laser pulse impact upon a target with an internal nanostructure", 
    "pagination": "1261-1268", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "63e54273812ffab6f5855a7c16ae242f056a39e3ebb7af9067cddf492ae072bc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063780x10130283"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020966321"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063780x10130283", 
      "https://app.dimensions.ai/details/publication/pub.1020966321"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS1063780X10130283"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063780x10130283'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063780x10130283'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063780x10130283'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063780x10130283'


 

This table displays all metadata directly associated to this object as RDF triples.

210 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063780x10130283 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N98bcaa688b214fb0951647972463019c
4 schema:citation sg:pub.10.1038/19037
5 https://doi.org/10.1016/j.physleta.2006.12.061
6 https://doi.org/10.1017/s0263034603211149
7 https://doi.org/10.1017/s0263034604223047
8 https://doi.org/10.1017/s0263034607000110
9 https://doi.org/10.1063/1.1396822
10 https://doi.org/10.1063/1.2336105
11 https://doi.org/10.1063/1.2435348
12 https://doi.org/10.1063/1.2715108
13 https://doi.org/10.1063/1.2820388
14 https://doi.org/10.1088/0031-8949/50/4/003
15 https://doi.org/10.1103/physreva.53.3379
16 https://doi.org/10.1103/physreva.63.032706
17 https://doi.org/10.1103/physreva.64.021201
18 https://doi.org/10.1103/physreva.65.045201
19 https://doi.org/10.1103/physreva.66.033204
20 https://doi.org/10.1103/physreva.68.063201
21 https://doi.org/10.1103/physreva.71.061804
22 https://doi.org/10.1103/physreva.73.031201
23 https://doi.org/10.1103/physreve.62.r5931
24 https://doi.org/10.1103/physreve.65.036410
25 https://doi.org/10.1103/physreve.71.066410
26 https://doi.org/10.1103/physreve.72.066404
27 https://doi.org/10.1103/physreve.73.066403
28 https://doi.org/10.1103/physreve.73.066404
29 https://doi.org/10.1103/physrevlett.72.1810
30 https://doi.org/10.1103/physrevlett.78.2732
31 https://doi.org/10.1103/physrevlett.94.205004
32 https://doi.org/10.1103/physrevlett.96.245002
33 https://doi.org/10.1117/12.425651
34 https://doi.org/10.1126/science.283.5407.1505
35 schema:datePublished 2010-12
36 schema:datePublishedReg 2010-12-01
37 schema:description X-ray diagnostics of the interaction of femtosecond laser pulses with intensities of 1016–1018 W/cm2 with CO2 clusters and frozen nanosize water particles is carried out. The stage of cluster expansion and the formation of a plasma channel, which governs the parameters of the formed X-ray radiation source and accelerated ion flows, is studied. The measurements are based on recording spatially resolved X-ray spectra of H- and He-like oxygen ions. Utilization of Rydberg transitions for spectra diagnostics makes it possible to determine plasma parameters on a time scale of t ∼ 10 ps after the beginning of a femtosecond pulse. The role of the rear edge of the laser pulse in sustaining the plasma temperature at a level of ∼100 eV in the stage of a nonadiabatic cluster expansion is shown. The analysis of the profiles and relative intensities of spectral lines allows one to determine the temperature and density of plasma electrons and distinguish the populations of “thermal” ions and ions that are accelerated up to energies of a few tens of kiloelectronvolts. It is shown that the use of solid clusters made of frozen nanoscale water droplets as targets leads to a substantial increase in the number of fast He-like ions. In this case, however, the efficiency of acceleration of H-like ions does not increase, because the time of their ionization in plasma exceeds the time of cluster expansion.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N1246191ab91a422989e84a09da509c6a
42 N6801cffab9634c4898291a69151645b1
43 sg:journal.1136237
44 schema:name Diagnostics of plasma produced by femtosecond laser pulse impact upon a target with an internal nanostructure
45 schema:pagination 1261-1268
46 schema:productId N5832af9f27034dc6978aa35a68705411
47 N84f7c63dfad3491a8df4d1f0cf156c73
48 Nbe1a2e979d5e46239e13018ec183d49b
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020966321
50 https://doi.org/10.1134/s1063780x10130283
51 schema:sdDatePublished 2019-04-10T19:55
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nbb290ad1769743cc885de40063ee3d23
54 schema:url http://link.springer.com/10.1134%2FS1063780X10130283
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N09390c9677c949159f95f1e5e4db248c rdf:first sg:person.011364675147.43
59 rdf:rest rdf:nil
60 N1246191ab91a422989e84a09da509c6a schema:issueNumber 13
61 rdf:type schema:PublicationIssue
62 N182adc4a37b9409dafe80cd407ddb06d rdf:first sg:person.01221202056.95
63 rdf:rest N799f4f5ae76f4777bd1ad46e9eb4fe77
64 N5832af9f27034dc6978aa35a68705411 schema:name doi
65 schema:value 10.1134/s1063780x10130283
66 rdf:type schema:PropertyValue
67 N5939bcb6e39049edb9e049d73e1439db rdf:first sg:person.0612562320.80
68 rdf:rest N09390c9677c949159f95f1e5e4db248c
69 N6801cffab9634c4898291a69151645b1 schema:volumeNumber 36
70 rdf:type schema:PublicationVolume
71 N799f4f5ae76f4777bd1ad46e9eb4fe77 rdf:first sg:person.01050436244.24
72 rdf:rest Nfcb248267c194f89bf918cea5780fc4f
73 N84f7c63dfad3491a8df4d1f0cf156c73 schema:name readcube_id
74 schema:value 63e54273812ffab6f5855a7c16ae242f056a39e3ebb7af9067cddf492ae072bc
75 rdf:type schema:PropertyValue
76 N98bcaa688b214fb0951647972463019c rdf:first sg:person.0676217044.16
77 rdf:rest Nbba4672147cc4275803dd9f014e904dd
78 Nbb290ad1769743cc885de40063ee3d23 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Nbba4672147cc4275803dd9f014e904dd rdf:first sg:person.01160546253.66
81 rdf:rest N182adc4a37b9409dafe80cd407ddb06d
82 Nbe1a2e979d5e46239e13018ec183d49b schema:name dimensions_id
83 schema:value pub.1020966321
84 rdf:type schema:PropertyValue
85 Ne46f989413be4840853d855332df43be rdf:first sg:person.07645402257.25
86 rdf:rest N5939bcb6e39049edb9e049d73e1439db
87 Nfcb248267c194f89bf918cea5780fc4f rdf:first sg:person.013546227144.26
88 rdf:rest Ne46f989413be4840853d855332df43be
89 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
90 schema:name Physical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
93 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
94 rdf:type schema:DefinedTerm
95 sg:journal.1136237 schema:issn 1063-780X
96 1562-6938
97 schema:name Plasma Physics Reports
98 rdf:type schema:Periodical
99 sg:person.01050436244.24 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
100 schema:familyName Pikuz
101 schema:givenName T. A.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050436244.24
103 rdf:type schema:Person
104 sg:person.011364675147.43 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
105 schema:familyName Gasilov
106 schema:givenName V. A.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011364675147.43
108 rdf:type schema:Person
109 sg:person.01160546253.66 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
110 schema:familyName Faenov
111 schema:givenName A. Ya.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160546253.66
113 rdf:type schema:Person
114 sg:person.01221202056.95 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
115 schema:familyName Gasilov
116 schema:givenName S. V.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221202056.95
118 rdf:type schema:Person
119 sg:person.013546227144.26 schema:affiliation https://www.grid.ac/institutes/grid.18763.3b
120 schema:familyName Pikuz
121 schema:givenName S. A.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013546227144.26
123 rdf:type schema:Person
124 sg:person.0612562320.80 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
125 schema:familyName Boldarev
126 schema:givenName A. S.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612562320.80
128 rdf:type schema:Person
129 sg:person.0676217044.16 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
130 schema:familyName Skobelev
131 schema:givenName I. Yu.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676217044.16
133 rdf:type schema:Person
134 sg:person.07645402257.25 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
135 schema:familyName Magunov
136 schema:givenName A. I.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07645402257.25
138 rdf:type schema:Person
139 sg:pub.10.1038/19037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053182751
140 https://doi.org/10.1038/19037
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.physleta.2006.12.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008176742
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1017/s0263034603211149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054065256
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1017/s0263034604223047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053857366
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1017/s0263034607000110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054088537
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1063/1.1396822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057702572
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1063/1.2336105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057850061
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1063/1.2435348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057857142
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1063/1.2715108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008580081
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1063/1.2820388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057875448
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1088/0031-8949/50/4/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059000508
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physreva.53.3379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060491423
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physreva.63.032706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060497000
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physreva.64.021201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060497369
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physreva.65.045201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060498160
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physreva.66.033204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060498572
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physreva.68.063201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060499610
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physreva.71.061804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060501205
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physreva.73.031201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060502018
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physreve.62.r5931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060726152
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physreve.65.036410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060728158
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physreve.71.066410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060733123
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physreve.72.066404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060733929
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physreve.73.066403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060734695
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physreve.73.066404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060734696
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevlett.72.1810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808656
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevlett.78.2732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060815027
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevlett.94.205004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060830377
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevlett.96.245002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060832437
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1117/12.425651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007230867
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1126/science.283.5407.1505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062564396
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.18763.3b schema:alternateName Moscow Institute of Physics and Technology
203 schema:name Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya ul. 13/19, 127412, Moscow, Russia
204 Moscow Institute of Physics and Technology, Institutskiĭ per. 9, 141700, Dolgoprudnyĭ, Moscow oblast, Russia
205 rdf:type schema:Organization
206 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
207 schema:name Institute of Mathematical Modeling, Russian Academy of Sciences, Miusskaya pl. 4a, 125047, Moscow, Russia
208 Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya ul. 13/19, 127412, Moscow, Russia
209 Prokhorov Institute of General Physics, Russian Academy of Sciences, ul. Vavilova 38, 119991, Moscow, Russia
210 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...