Suppression of longitudinal losses in a gas-dynamic trap by using an ambipolar mirror View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-05

AUTHORS

A. V. Anikeev, P. A. Bagryansky, A. D. Beklemishev, A. A. Lizunov, V. V. Maksimov, S. V. Murakhtin, V. V. Prikhodko, A. L. Solomakhin

ABSTRACT

The efficiency of utilizing ambipolar mirrors for suppression of longitudinal losses of particles and energy in a gas-dynamic trap (GDT) was investigated. An additional relatively small axisymmetric mirror cell was installed in one of the facility ends. Hydrogen or deuterium atomic beams with an energy of 22 keV and equivalent current density of up to 1 A/cm2 were injected into the additional cell at an angle of 90° to the facility axis. Trapping of the beams with a total power of 800 kW by the plasma in the additional cell leads to the formation of a hot ion population with an anisotropic velocity distribution, a mean energy of 13 keV, and a density of up to 4.5 × 1013 cm−3. It is shown that the confinement of hot ions in the additional cell is determined by classical processes, such as charge exchange on the beam atoms and collisional deceleration by electrons, in spite of the onset of Alfvén ion-cyclotron instability at fast ion densities higher than 2.5 × 1013 cm−3. The effect of ambipolar confinement manifests itself in that, at hot ion densities higher than 3 × 1013 cm−3, the flux density of ions escaping from the trap in the mode with beam injection decreases fivefold as compared to that without injection. In this case, the density of the Maxwellian plasma component in the central cell is about 2.5 × 1013 cm−3. The efficiency of suppression of longitudinal particle losses by the ambipolar mirror substantially exceeds estimates obtained for both collisional (gas-dynamic) and collisionless (adiabatic) confinement modes. Qualitatively, this is because, in the GDT experiments, the mode of warm plasma confinement is transitional between the gas-dynamic and adiabatic modes and the use of an ambipolar mirror facilitates a transition from the lossy gas-dynamic mode into a nearly adiabatic one. More... »

PAGES

381-389

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063780x10050028

DOI

http://dx.doi.org/10.1134/s1063780x10050028

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011197829


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 11, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Anikeev", 
        "givenName": "A. V.", 
        "id": "sg:person.01175411562.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175411562.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 11, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bagryansky", 
        "givenName": "P. A.", 
        "id": "sg:person.010130665703.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010130665703.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 11, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beklemishev", 
        "givenName": "A. D.", 
        "id": "sg:person.015224143700.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015224143700.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 11, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lizunov", 
        "givenName": "A. A.", 
        "id": "sg:person.010036256511.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010036256511.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 11, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maksimov", 
        "givenName": "V. V.", 
        "id": "sg:person.016656771643.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016656771643.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University", 
          "id": "https://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 11, 630090, Novosibirsk, Russia", 
            "Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murakhtin", 
        "givenName": "S. V.", 
        "id": "sg:person.011061030651.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011061030651.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 11, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prikhodko", 
        "givenName": "V. V.", 
        "id": "sg:person.01016326013.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016326013.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 11, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Solomakhin", 
        "givenName": "A. L.", 
        "id": "sg:person.010755142143.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010755142143.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.anucene.2007.12.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004830937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fusengdes.2003.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009472990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fusengdes.2003.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009472990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10894-006-9034-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039762284", 
          "https://doi.org/10.1007/s10894-006-9034-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2202922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057846422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst05-a604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091168090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst05-a604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091168090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst05-a675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091168161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst05-a675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091168161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst99-a11963823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103668555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst99-a11963823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103668555"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-05", 
    "datePublishedReg": "2010-05-01", 
    "description": "The efficiency of utilizing ambipolar mirrors for suppression of longitudinal losses of particles and energy in a gas-dynamic trap (GDT) was investigated. An additional relatively small axisymmetric mirror cell was installed in one of the facility ends. Hydrogen or deuterium atomic beams with an energy of 22 keV and equivalent current density of up to 1 A/cm2 were injected into the additional cell at an angle of 90\u00b0 to the facility axis. Trapping of the beams with a total power of 800 kW by the plasma in the additional cell leads to the formation of a hot ion population with an anisotropic velocity distribution, a mean energy of 13 keV, and a density of up to 4.5 \u00d7 1013 cm\u22123. It is shown that the confinement of hot ions in the additional cell is determined by classical processes, such as charge exchange on the beam atoms and collisional deceleration by electrons, in spite of the onset of Alfv\u00e9n ion-cyclotron instability at fast ion densities higher than 2.5 \u00d7 1013 cm\u22123. The effect of ambipolar confinement manifests itself in that, at hot ion densities higher than 3 \u00d7 1013 cm\u22123, the flux density of ions escaping from the trap in the mode with beam injection decreases fivefold as compared to that without injection. In this case, the density of the Maxwellian plasma component in the central cell is about 2.5 \u00d7 1013 cm\u22123. The efficiency of suppression of longitudinal particle losses by the ambipolar mirror substantially exceeds estimates obtained for both collisional (gas-dynamic) and collisionless (adiabatic) confinement modes. Qualitatively, this is because, in the GDT experiments, the mode of warm plasma confinement is transitional between the gas-dynamic and adiabatic modes and the use of an ambipolar mirror facilitates a transition from the lossy gas-dynamic mode into a nearly adiabatic one.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063780x10050028", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136237", 
        "issn": [
          "1063-780X", 
          "1562-6938"
        ], 
        "name": "Plasma Physics Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "name": "Suppression of longitudinal losses in a gas-dynamic trap by using an ambipolar mirror", 
    "pagination": "381-389", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3559ca75bd74da676a4db3d8b1030862857f7afdc9a88e60bcd069ae85ae02ce"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063780x10050028"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011197829"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063780x10050028", 
      "https://app.dimensions.ai/details/publication/pub.1011197829"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113667_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS1063780X10050028"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063780x10050028'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063780x10050028'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063780x10050028'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063780x10050028'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063780x10050028 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N31f619daca6f48cfb4fcffba6c0eb658
4 schema:citation sg:pub.10.1007/s10894-006-9034-5
5 https://doi.org/10.1016/j.anucene.2007.12.012
6 https://doi.org/10.1016/j.fusengdes.2003.08.002
7 https://doi.org/10.1063/1.2202922
8 https://doi.org/10.13182/fst05-a604
9 https://doi.org/10.13182/fst05-a675
10 https://doi.org/10.13182/fst99-a11963823
11 schema:datePublished 2010-05
12 schema:datePublishedReg 2010-05-01
13 schema:description The efficiency of utilizing ambipolar mirrors for suppression of longitudinal losses of particles and energy in a gas-dynamic trap (GDT) was investigated. An additional relatively small axisymmetric mirror cell was installed in one of the facility ends. Hydrogen or deuterium atomic beams with an energy of 22 keV and equivalent current density of up to 1 A/cm2 were injected into the additional cell at an angle of 90° to the facility axis. Trapping of the beams with a total power of 800 kW by the plasma in the additional cell leads to the formation of a hot ion population with an anisotropic velocity distribution, a mean energy of 13 keV, and a density of up to 4.5 × 1013 cm−3. It is shown that the confinement of hot ions in the additional cell is determined by classical processes, such as charge exchange on the beam atoms and collisional deceleration by electrons, in spite of the onset of Alfvén ion-cyclotron instability at fast ion densities higher than 2.5 × 1013 cm−3. The effect of ambipolar confinement manifests itself in that, at hot ion densities higher than 3 × 1013 cm−3, the flux density of ions escaping from the trap in the mode with beam injection decreases fivefold as compared to that without injection. In this case, the density of the Maxwellian plasma component in the central cell is about 2.5 × 1013 cm−3. The efficiency of suppression of longitudinal particle losses by the ambipolar mirror substantially exceeds estimates obtained for both collisional (gas-dynamic) and collisionless (adiabatic) confinement modes. Qualitatively, this is because, in the GDT experiments, the mode of warm plasma confinement is transitional between the gas-dynamic and adiabatic modes and the use of an ambipolar mirror facilitates a transition from the lossy gas-dynamic mode into a nearly adiabatic one.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N68e3b7d2808c4c49870254bdfefaf62f
18 Nf2010eec858d48a8940d3f657fc10afb
19 sg:journal.1136237
20 schema:name Suppression of longitudinal losses in a gas-dynamic trap by using an ambipolar mirror
21 schema:pagination 381-389
22 schema:productId N2652226950c54dd0981a3a0b0582b33d
23 N3b8a97680526491d9358f1c7603b4725
24 N4b2ca285c36e46649d6803f0ded71091
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011197829
26 https://doi.org/10.1134/s1063780x10050028
27 schema:sdDatePublished 2019-04-11T10:35
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher Na4f47b0faa9d49528b555ca939572f83
30 schema:url http://link.springer.com/10.1134%2FS1063780X10050028
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N0f800f47db304c15b307c6af4cb63720 rdf:first sg:person.010755142143.38
35 rdf:rest rdf:nil
36 N2652226950c54dd0981a3a0b0582b33d schema:name readcube_id
37 schema:value 3559ca75bd74da676a4db3d8b1030862857f7afdc9a88e60bcd069ae85ae02ce
38 rdf:type schema:PropertyValue
39 N316a5e7d64154547a3c547f66b6eeab7 rdf:first sg:person.011061030651.65
40 rdf:rest N80dad5e032eb46868f84d08f02278b3a
41 N31f619daca6f48cfb4fcffba6c0eb658 rdf:first sg:person.01175411562.38
42 rdf:rest N6e6de2e36bdc49f3aa29c7b7b6ba14a2
43 N3b8a97680526491d9358f1c7603b4725 schema:name dimensions_id
44 schema:value pub.1011197829
45 rdf:type schema:PropertyValue
46 N4b2ca285c36e46649d6803f0ded71091 schema:name doi
47 schema:value 10.1134/s1063780x10050028
48 rdf:type schema:PropertyValue
49 N68e3b7d2808c4c49870254bdfefaf62f schema:issueNumber 5
50 rdf:type schema:PublicationIssue
51 N6e6de2e36bdc49f3aa29c7b7b6ba14a2 rdf:first sg:person.010130665703.61
52 rdf:rest Nb2b6958d6d114c158635950a76fb3bee
53 N80dad5e032eb46868f84d08f02278b3a rdf:first sg:person.01016326013.58
54 rdf:rest N0f800f47db304c15b307c6af4cb63720
55 N8f607019de1e4e3eaf5ca264b1a4d88b rdf:first sg:person.016656771643.37
56 rdf:rest N316a5e7d64154547a3c547f66b6eeab7
57 Na4f47b0faa9d49528b555ca939572f83 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 Nb2b6958d6d114c158635950a76fb3bee rdf:first sg:person.015224143700.06
60 rdf:rest Nc275d8a107f148beb31ae8ea7e166cb7
61 Nc275d8a107f148beb31ae8ea7e166cb7 rdf:first sg:person.010036256511.12
62 rdf:rest N8f607019de1e4e3eaf5ca264b1a4d88b
63 Nf2010eec858d48a8940d3f657fc10afb schema:volumeNumber 36
64 rdf:type schema:PublicationVolume
65 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
66 schema:name Physical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
69 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
70 rdf:type schema:DefinedTerm
71 sg:journal.1136237 schema:issn 1063-780X
72 1562-6938
73 schema:name Plasma Physics Reports
74 rdf:type schema:Periodical
75 sg:person.010036256511.12 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
76 schema:familyName Lizunov
77 schema:givenName A. A.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010036256511.12
79 rdf:type schema:Person
80 sg:person.010130665703.61 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
81 schema:familyName Bagryansky
82 schema:givenName P. A.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010130665703.61
84 rdf:type schema:Person
85 sg:person.01016326013.58 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
86 schema:familyName Prikhodko
87 schema:givenName V. V.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016326013.58
89 rdf:type schema:Person
90 sg:person.010755142143.38 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
91 schema:familyName Solomakhin
92 schema:givenName A. L.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010755142143.38
94 rdf:type schema:Person
95 sg:person.011061030651.65 schema:affiliation https://www.grid.ac/institutes/grid.4605.7
96 schema:familyName Murakhtin
97 schema:givenName S. V.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011061030651.65
99 rdf:type schema:Person
100 sg:person.01175411562.38 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
101 schema:familyName Anikeev
102 schema:givenName A. V.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175411562.38
104 rdf:type schema:Person
105 sg:person.015224143700.06 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
106 schema:familyName Beklemishev
107 schema:givenName A. D.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015224143700.06
109 rdf:type schema:Person
110 sg:person.016656771643.37 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
111 schema:familyName Maksimov
112 schema:givenName V. V.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016656771643.37
114 rdf:type schema:Person
115 sg:pub.10.1007/s10894-006-9034-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039762284
116 https://doi.org/10.1007/s10894-006-9034-5
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.anucene.2007.12.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004830937
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.fusengdes.2003.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009472990
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1063/1.2202922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057846422
123 rdf:type schema:CreativeWork
124 https://doi.org/10.13182/fst05-a604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091168090
125 rdf:type schema:CreativeWork
126 https://doi.org/10.13182/fst05-a675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091168161
127 rdf:type schema:CreativeWork
128 https://doi.org/10.13182/fst99-a11963823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103668555
129 rdf:type schema:CreativeWork
130 https://www.grid.ac/institutes/grid.418495.5 schema:alternateName Budker Institute of Nuclear Physics
131 schema:name Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent’eva 11, 630090, Novosibirsk, Russia
132 rdf:type schema:Organization
133 https://www.grid.ac/institutes/grid.4605.7 schema:alternateName Novosibirsk State University
134 schema:name Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent’eva 11, 630090, Novosibirsk, Russia
135 Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...