Suppression of longitudinal losses in a gas-dynamic trap by using an ambipolar mirror View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-05

AUTHORS

A. V. Anikeev, P. A. Bagryansky, A. D. Beklemishev, A. A. Lizunov, V. V. Maksimov, S. V. Murakhtin, V. V. Prikhodko, A. L. Solomakhin

ABSTRACT

The efficiency of utilizing ambipolar mirrors for suppression of longitudinal losses of particles and energy in a gas-dynamic trap (GDT) was investigated. An additional relatively small axisymmetric mirror cell was installed in one of the facility ends. Hydrogen or deuterium atomic beams with an energy of 22 keV and equivalent current density of up to 1 A/cm2 were injected into the additional cell at an angle of 90° to the facility axis. Trapping of the beams with a total power of 800 kW by the plasma in the additional cell leads to the formation of a hot ion population with an anisotropic velocity distribution, a mean energy of 13 keV, and a density of up to 4.5 × 1013 cm−3. It is shown that the confinement of hot ions in the additional cell is determined by classical processes, such as charge exchange on the beam atoms and collisional deceleration by electrons, in spite of the onset of Alfvén ion-cyclotron instability at fast ion densities higher than 2.5 × 1013 cm−3. The effect of ambipolar confinement manifests itself in that, at hot ion densities higher than 3 × 1013 cm−3, the flux density of ions escaping from the trap in the mode with beam injection decreases fivefold as compared to that without injection. In this case, the density of the Maxwellian plasma component in the central cell is about 2.5 × 1013 cm−3. The efficiency of suppression of longitudinal particle losses by the ambipolar mirror substantially exceeds estimates obtained for both collisional (gas-dynamic) and collisionless (adiabatic) confinement modes. Qualitatively, this is because, in the GDT experiments, the mode of warm plasma confinement is transitional between the gas-dynamic and adiabatic modes and the use of an ambipolar mirror facilitates a transition from the lossy gas-dynamic mode into a nearly adiabatic one. More... »

PAGES

381-389

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063780x10050028

DOI

http://dx.doi.org/10.1134/s1063780x10050028

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011197829


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 11, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Anikeev", 
        "givenName": "A. V.", 
        "id": "sg:person.01175411562.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175411562.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 11, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bagryansky", 
        "givenName": "P. A.", 
        "id": "sg:person.010130665703.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010130665703.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 11, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beklemishev", 
        "givenName": "A. D.", 
        "id": "sg:person.015224143700.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015224143700.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 11, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lizunov", 
        "givenName": "A. A.", 
        "id": "sg:person.010036256511.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010036256511.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 11, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maksimov", 
        "givenName": "V. V.", 
        "id": "sg:person.016656771643.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016656771643.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University", 
          "id": "https://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 11, 630090, Novosibirsk, Russia", 
            "Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murakhtin", 
        "givenName": "S. V.", 
        "id": "sg:person.011061030651.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011061030651.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 11, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prikhodko", 
        "givenName": "V. V.", 
        "id": "sg:person.01016326013.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016326013.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent\u2019eva 11, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Solomakhin", 
        "givenName": "A. L.", 
        "id": "sg:person.010755142143.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010755142143.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.anucene.2007.12.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004830937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fusengdes.2003.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009472990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fusengdes.2003.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009472990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10894-006-9034-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039762284", 
          "https://doi.org/10.1007/s10894-006-9034-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2202922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057846422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst05-a604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091168090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst05-a604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091168090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst05-a675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091168161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst05-a675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091168161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst99-a11963823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103668555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13182/fst99-a11963823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103668555"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-05", 
    "datePublishedReg": "2010-05-01", 
    "description": "The efficiency of utilizing ambipolar mirrors for suppression of longitudinal losses of particles and energy in a gas-dynamic trap (GDT) was investigated. An additional relatively small axisymmetric mirror cell was installed in one of the facility ends. Hydrogen or deuterium atomic beams with an energy of 22 keV and equivalent current density of up to 1 A/cm2 were injected into the additional cell at an angle of 90\u00b0 to the facility axis. Trapping of the beams with a total power of 800 kW by the plasma in the additional cell leads to the formation of a hot ion population with an anisotropic velocity distribution, a mean energy of 13 keV, and a density of up to 4.5 \u00d7 1013 cm\u22123. It is shown that the confinement of hot ions in the additional cell is determined by classical processes, such as charge exchange on the beam atoms and collisional deceleration by electrons, in spite of the onset of Alfv\u00e9n ion-cyclotron instability at fast ion densities higher than 2.5 \u00d7 1013 cm\u22123. The effect of ambipolar confinement manifests itself in that, at hot ion densities higher than 3 \u00d7 1013 cm\u22123, the flux density of ions escaping from the trap in the mode with beam injection decreases fivefold as compared to that without injection. In this case, the density of the Maxwellian plasma component in the central cell is about 2.5 \u00d7 1013 cm\u22123. The efficiency of suppression of longitudinal particle losses by the ambipolar mirror substantially exceeds estimates obtained for both collisional (gas-dynamic) and collisionless (adiabatic) confinement modes. Qualitatively, this is because, in the GDT experiments, the mode of warm plasma confinement is transitional between the gas-dynamic and adiabatic modes and the use of an ambipolar mirror facilitates a transition from the lossy gas-dynamic mode into a nearly adiabatic one.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s1063780x10050028", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136237", 
        "issn": [
          "1063-780X", 
          "1562-6938"
        ], 
        "name": "Plasma Physics Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "name": "Suppression of longitudinal losses in a gas-dynamic trap by using an ambipolar mirror", 
    "pagination": "381-389", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3559ca75bd74da676a4db3d8b1030862857f7afdc9a88e60bcd069ae85ae02ce"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063780x10050028"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011197829"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063780x10050028", 
      "https://app.dimensions.ai/details/publication/pub.1011197829"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113667_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS1063780X10050028"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063780x10050028'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063780x10050028'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063780x10050028'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063780x10050028'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063780x10050028 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N8d8798bed6e2422787a02f22d8efa189
4 schema:citation sg:pub.10.1007/s10894-006-9034-5
5 https://doi.org/10.1016/j.anucene.2007.12.012
6 https://doi.org/10.1016/j.fusengdes.2003.08.002
7 https://doi.org/10.1063/1.2202922
8 https://doi.org/10.13182/fst05-a604
9 https://doi.org/10.13182/fst05-a675
10 https://doi.org/10.13182/fst99-a11963823
11 schema:datePublished 2010-05
12 schema:datePublishedReg 2010-05-01
13 schema:description The efficiency of utilizing ambipolar mirrors for suppression of longitudinal losses of particles and energy in a gas-dynamic trap (GDT) was investigated. An additional relatively small axisymmetric mirror cell was installed in one of the facility ends. Hydrogen or deuterium atomic beams with an energy of 22 keV and equivalent current density of up to 1 A/cm2 were injected into the additional cell at an angle of 90° to the facility axis. Trapping of the beams with a total power of 800 kW by the plasma in the additional cell leads to the formation of a hot ion population with an anisotropic velocity distribution, a mean energy of 13 keV, and a density of up to 4.5 × 1013 cm−3. It is shown that the confinement of hot ions in the additional cell is determined by classical processes, such as charge exchange on the beam atoms and collisional deceleration by electrons, in spite of the onset of Alfvén ion-cyclotron instability at fast ion densities higher than 2.5 × 1013 cm−3. The effect of ambipolar confinement manifests itself in that, at hot ion densities higher than 3 × 1013 cm−3, the flux density of ions escaping from the trap in the mode with beam injection decreases fivefold as compared to that without injection. In this case, the density of the Maxwellian plasma component in the central cell is about 2.5 × 1013 cm−3. The efficiency of suppression of longitudinal particle losses by the ambipolar mirror substantially exceeds estimates obtained for both collisional (gas-dynamic) and collisionless (adiabatic) confinement modes. Qualitatively, this is because, in the GDT experiments, the mode of warm plasma confinement is transitional between the gas-dynamic and adiabatic modes and the use of an ambipolar mirror facilitates a transition from the lossy gas-dynamic mode into a nearly adiabatic one.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N04047c310dca4abe8042dfad1c83adca
18 N2514354d38a04271ae9bb4b7982389d1
19 sg:journal.1136237
20 schema:name Suppression of longitudinal losses in a gas-dynamic trap by using an ambipolar mirror
21 schema:pagination 381-389
22 schema:productId N8fe2236a8aee4a58b6822260b28eeee7
23 Naa48ee19ed9a4712a3aa14d8c00e0a43
24 Nc3555ade97eb440ea4068dde0fa17b4d
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011197829
26 https://doi.org/10.1134/s1063780x10050028
27 schema:sdDatePublished 2019-04-11T10:35
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher Naaff1e419f6c4a5f93218ca78388ee9c
30 schema:url http://link.springer.com/10.1134%2FS1063780X10050028
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N04047c310dca4abe8042dfad1c83adca schema:volumeNumber 36
35 rdf:type schema:PublicationVolume
36 N0c390cb1a17e4b36aede5afe334cea11 rdf:first sg:person.010036256511.12
37 rdf:rest Ne6fc819b5c7a4bc6bfce7a89ce2c12c4
38 N2514354d38a04271ae9bb4b7982389d1 schema:issueNumber 5
39 rdf:type schema:PublicationIssue
40 N2938662ec95f4dcf93fef75e4f952d40 rdf:first sg:person.01016326013.58
41 rdf:rest N8fb49d0729be49df8a8e195dc62b0ad2
42 N4415a68e3e3b4d9b9d8782c60e81290e rdf:first sg:person.015224143700.06
43 rdf:rest N0c390cb1a17e4b36aede5afe334cea11
44 N569b418b254d43b8a4180ed9c3bec512 rdf:first sg:person.010130665703.61
45 rdf:rest N4415a68e3e3b4d9b9d8782c60e81290e
46 N8d8798bed6e2422787a02f22d8efa189 rdf:first sg:person.01175411562.38
47 rdf:rest N569b418b254d43b8a4180ed9c3bec512
48 N8fb49d0729be49df8a8e195dc62b0ad2 rdf:first sg:person.010755142143.38
49 rdf:rest rdf:nil
50 N8fe2236a8aee4a58b6822260b28eeee7 schema:name readcube_id
51 schema:value 3559ca75bd74da676a4db3d8b1030862857f7afdc9a88e60bcd069ae85ae02ce
52 rdf:type schema:PropertyValue
53 Naa48ee19ed9a4712a3aa14d8c00e0a43 schema:name doi
54 schema:value 10.1134/s1063780x10050028
55 rdf:type schema:PropertyValue
56 Naaff1e419f6c4a5f93218ca78388ee9c schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 Nb809f7b9877d40ce81964c5385c9fa19 rdf:first sg:person.011061030651.65
59 rdf:rest N2938662ec95f4dcf93fef75e4f952d40
60 Nc3555ade97eb440ea4068dde0fa17b4d schema:name dimensions_id
61 schema:value pub.1011197829
62 rdf:type schema:PropertyValue
63 Ne6fc819b5c7a4bc6bfce7a89ce2c12c4 rdf:first sg:person.016656771643.37
64 rdf:rest Nb809f7b9877d40ce81964c5385c9fa19
65 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
66 schema:name Physical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
69 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
70 rdf:type schema:DefinedTerm
71 sg:journal.1136237 schema:issn 1063-780X
72 1562-6938
73 schema:name Plasma Physics Reports
74 rdf:type schema:Periodical
75 sg:person.010036256511.12 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
76 schema:familyName Lizunov
77 schema:givenName A. A.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010036256511.12
79 rdf:type schema:Person
80 sg:person.010130665703.61 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
81 schema:familyName Bagryansky
82 schema:givenName P. A.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010130665703.61
84 rdf:type schema:Person
85 sg:person.01016326013.58 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
86 schema:familyName Prikhodko
87 schema:givenName V. V.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016326013.58
89 rdf:type schema:Person
90 sg:person.010755142143.38 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
91 schema:familyName Solomakhin
92 schema:givenName A. L.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010755142143.38
94 rdf:type schema:Person
95 sg:person.011061030651.65 schema:affiliation https://www.grid.ac/institutes/grid.4605.7
96 schema:familyName Murakhtin
97 schema:givenName S. V.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011061030651.65
99 rdf:type schema:Person
100 sg:person.01175411562.38 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
101 schema:familyName Anikeev
102 schema:givenName A. V.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175411562.38
104 rdf:type schema:Person
105 sg:person.015224143700.06 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
106 schema:familyName Beklemishev
107 schema:givenName A. D.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015224143700.06
109 rdf:type schema:Person
110 sg:person.016656771643.37 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
111 schema:familyName Maksimov
112 schema:givenName V. V.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016656771643.37
114 rdf:type schema:Person
115 sg:pub.10.1007/s10894-006-9034-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039762284
116 https://doi.org/10.1007/s10894-006-9034-5
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.anucene.2007.12.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004830937
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.fusengdes.2003.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009472990
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1063/1.2202922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057846422
123 rdf:type schema:CreativeWork
124 https://doi.org/10.13182/fst05-a604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091168090
125 rdf:type schema:CreativeWork
126 https://doi.org/10.13182/fst05-a675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091168161
127 rdf:type schema:CreativeWork
128 https://doi.org/10.13182/fst99-a11963823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103668555
129 rdf:type schema:CreativeWork
130 https://www.grid.ac/institutes/grid.418495.5 schema:alternateName Budker Institute of Nuclear Physics
131 schema:name Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent’eva 11, 630090, Novosibirsk, Russia
132 rdf:type schema:Organization
133 https://www.grid.ac/institutes/grid.4605.7 schema:alternateName Novosibirsk State University
134 schema:name Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent’eva 11, 630090, Novosibirsk, Russia
135 Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...