Parametrizing the line shapes of near-threshold resonances View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-11

AUTHORS

Yu. S. Kalashnikova, R. V. Mizuk, A. V. Nefediev

ABSTRACT

A parametrization is proposed for the line shapes of near-threshold resonances, which is based on the model of coupled channels and can include an arbitrary number of elastic and inelastic channels and bare poles. The proposed parametrization satisfies the requirements imposed by unitarity and analyticity, and is convenient for the data analysis embracing all available experimental information. The model parameters are physically meaningful, and their values can be found using different theoretical schemes. More... »

PAGES

849-850

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s1063779617060235

DOI

http://dx.doi.org/10.1134/s1063779617060235

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092689344


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "National Research Nuclear University MEPhI, 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kalashnikova", 
        "givenName": "Yu. S.", 
        "id": "sg:person.014644566306.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014644566306.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "National Research Nuclear University MEPhI, 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mizuk", 
        "givenName": "R. V.", 
        "id": "sg:person.01304443224.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304443224.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "National Research Nuclear University MEPhI, 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nefediev", 
        "givenName": "A. V.", 
        "id": "sg:person.014430162464.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014430162464.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevd.84.054010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014026965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.84.054010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014026965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.122001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023224569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.122001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023224569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epja/i2013-13007-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027994119", 
          "https://doi.org/10.1140/epja/i2013-13007-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.262001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047465566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.262001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047465566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.93.074031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060712400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.93.074031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060712400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.202001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.202001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.212001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.212001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765606"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11", 
    "datePublishedReg": "2017-11-01", 
    "description": "A parametrization is proposed for the line shapes of near-threshold resonances, which is based on the model of coupled channels and can include an arbitrary number of elastic and inelastic channels and bare poles. The proposed parametrization satisfies the requirements imposed by unitarity and analyticity, and is convenient for the data analysis embracing all available experimental information. The model parameters are physically meaningful, and their values can be found using different theoretical schemes.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1134/s1063779617060235", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1022444", 
        "issn": [
          "0090-4759", 
          "1090-6495"
        ], 
        "name": "Physics of Particles and Nuclei", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "48"
      }
    ], 
    "name": "Parametrizing the line shapes of near-threshold resonances", 
    "pagination": "849-850", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "644f52261f854f700790e0565f588dfa10d562a6b8e88c91916e0613e30b35da"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s1063779617060235"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092689344"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s1063779617060235", 
      "https://app.dimensions.ai/details/publication/pub.1092689344"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000493.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S1063779617060235"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s1063779617060235'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s1063779617060235'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s1063779617060235'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s1063779617060235'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s1063779617060235 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N34cd5e69c99e4a4d88ead60ab6ee696b
4 schema:citation sg:pub.10.1140/epja/i2013-13007-x
5 https://doi.org/10.1103/physrevd.84.054010
6 https://doi.org/10.1103/physrevd.93.074031
7 https://doi.org/10.1103/physrevlett.108.122001
8 https://doi.org/10.1103/physrevlett.115.202001
9 https://doi.org/10.1103/physrevlett.116.212001
10 https://doi.org/10.1103/physrevlett.91.262001
11 schema:datePublished 2017-11
12 schema:datePublishedReg 2017-11-01
13 schema:description A parametrization is proposed for the line shapes of near-threshold resonances, which is based on the model of coupled channels and can include an arbitrary number of elastic and inelastic channels and bare poles. The proposed parametrization satisfies the requirements imposed by unitarity and analyticity, and is convenient for the data analysis embracing all available experimental information. The model parameters are physically meaningful, and their values can be found using different theoretical schemes.
14 schema:genre non_research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N57852b74cde94a7ebf20d924bd9e7902
18 N6d65cfe9a10b4ae3a524a16c69cec405
19 sg:journal.1022444
20 schema:name Parametrizing the line shapes of near-threshold resonances
21 schema:pagination 849-850
22 schema:productId N62a5afb74de64630aac77afbb498b2b8
23 Na1120be90fb346edb53718e240832bce
24 Ne2c8c321556e48c7b95fe2732ae6ac0e
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092689344
26 https://doi.org/10.1134/s1063779617060235
27 schema:sdDatePublished 2019-04-11T01:03
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N91814677793a4c5bb22b9d752110b5fb
30 schema:url http://link.springer.com/10.1134/S1063779617060235
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N34cd5e69c99e4a4d88ead60ab6ee696b rdf:first sg:person.014644566306.27
35 rdf:rest N5349819107c14dd48646df62d1112dd9
36 N5349819107c14dd48646df62d1112dd9 rdf:first sg:person.01304443224.90
37 rdf:rest Ne49de46cadb24fffa185d375a476cd00
38 N57852b74cde94a7ebf20d924bd9e7902 schema:issueNumber 6
39 rdf:type schema:PublicationIssue
40 N62a5afb74de64630aac77afbb498b2b8 schema:name dimensions_id
41 schema:value pub.1092689344
42 rdf:type schema:PropertyValue
43 N6d65cfe9a10b4ae3a524a16c69cec405 schema:volumeNumber 48
44 rdf:type schema:PublicationVolume
45 N91814677793a4c5bb22b9d752110b5fb schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 Na1120be90fb346edb53718e240832bce schema:name readcube_id
48 schema:value 644f52261f854f700790e0565f588dfa10d562a6b8e88c91916e0613e30b35da
49 rdf:type schema:PropertyValue
50 Ne2c8c321556e48c7b95fe2732ae6ac0e schema:name doi
51 schema:value 10.1134/s1063779617060235
52 rdf:type schema:PropertyValue
53 Ne49de46cadb24fffa185d375a476cd00 rdf:first sg:person.014430162464.58
54 rdf:rest rdf:nil
55 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
56 schema:name Information and Computing Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
59 schema:name Artificial Intelligence and Image Processing
60 rdf:type schema:DefinedTerm
61 sg:journal.1022444 schema:issn 0090-4759
62 1090-6495
63 schema:name Physics of Particles and Nuclei
64 rdf:type schema:Periodical
65 sg:person.01304443224.90 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
66 schema:familyName Mizuk
67 schema:givenName R. V.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304443224.90
69 rdf:type schema:Person
70 sg:person.014430162464.58 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
71 schema:familyName Nefediev
72 schema:givenName A. V.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014430162464.58
74 rdf:type schema:Person
75 sg:person.014644566306.27 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
76 schema:familyName Kalashnikova
77 schema:givenName Yu. S.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014644566306.27
79 rdf:type schema:Person
80 sg:pub.10.1140/epja/i2013-13007-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027994119
81 https://doi.org/10.1140/epja/i2013-13007-x
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1103/physrevd.84.054010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014026965
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1103/physrevd.93.074031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060712400
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1103/physrevlett.108.122001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023224569
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1103/physrevlett.115.202001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764440
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1103/physrevlett.116.212001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060765606
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1103/physrevlett.91.262001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047465566
94 rdf:type schema:CreativeWork
95 https://www.grid.ac/institutes/grid.183446.c schema:alternateName Moscow Engineering Physics Institute
96 schema:name National Research Nuclear University MEPhI, 115409, Moscow, Russia
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...